
CSC323 2010S Software Design 

Class 10: Unit Testing
Held: Thursday, February 25, 2010

Summary: We consider the related processes of unit testing and test-driven development. 

Related Pages:

EBoard. 

Notes:

Readings for Monday: Skim Chapters 1 and 2 of Version Control with Subversion (for Subversion
1.5); Read BC 2: Subversion’s Delta Editor. 
At times, I felt like I read something different than the rest of you. 
EC: Today’s CS Extra. 
EC: Tomorrow’s CS Table.

Overview:

Project Discussion. 
About Unit Testing and Test-Driven Development. 
Beautiful Testing. 
PyUnit: Unit Testing in Python. 
Lab: Unit Testing.

Project Ideas
We’ll listen to your project ideas and consider which might be appropriate for the class. 
Remember: A good project involves natural polymorphism, inheritance, and encapsulation.

Unit Testing and Test-Driven Development
Unit Testing and Test-Driven Development are, as their names suggest, test-centric development
methodologies (or components thereof). 
Unit Testing: Write tests for each “unit” of the program. (A unit is typically a small piece of the
program.) 
Test-Driven Development: A cyclic strategy in which we write tests before adding new features. 
We’ve already talked about the import of having an automated test, one which simply reports success
or a list of failures.

1

http://www.cs.grinnell.edu/~rebelsky/Courses/CSC323/2010S/
http://svnbook.red-bean.com/


Why write tests?

Gives us more confidence in the code. 
Helps us think about the problem. 
Gives us more confidence to change our code. 
...

Why write tests first?

Evidence suggests that if we don’t write the tests first, we will be less likely to write the tests. 
As is the case for writing documentation, when we write the tests first, we think more carefully about
the problem. 
When we write tests first, we are less likely to be biased by the design of the procedure we wrote. 
When we write tests first, we 
...

Because of the power of unit testing, almost every modern language has a unit testing framework. 

Many of them (including JUnit and PyUnit) are based on Kent Beck’s original unit testing design. 
They take advantage of important OO techniques, such as inheritance and introspection. 
The basic of this is a test case. 

Set up some data for testing (e.g., build an array) 
Run a series of tests on the data 
Clean up after yourself, if necessary.

Test cases are then grouped hierarchially into suites 

Beautiful Testing
There were a host of questions, which we’ll try to cover. 
We’ll also look at the normal 

What is beautiful? 
What is ugly? 
What can you take away from this all?

Unit Testing in Python
A variant of the original Beck-style testing framework. 
We use the unittest package. 
Individual test cases subclass unittest.TestCase. 
Suites are built from unitTest.TestSuite. 
We run suites from the interactive pane with unittest.TextTestRunner().run(suite).

2



An Exercise
Your goal: Design two test suites 

One for a binary search. 
One for a rational number class.

We’ll discuss them as a group. 
If we don’t have enough time, we’ll turn them into an assignment.

Copyright © 2010 Samuel A. Rebelsky. This work is licensed under a Creative Commons
Attribution-NonCommercial 2.5 License. To view a copy of this license, visit 
http://creativecommons.org/licenses/by-nc/2.5/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA. 

3

http://creativecommons.org/licenses/by-nc/2.5/
http://creativecommons.org/licenses/by-nc/2.5/
http://creativecommons.org/licenses/by-nc/2.5/

	Class 10: Unit Testing
	Project Ideas
	Unit Testing and Test-Driven Development
	Beautiful Testing
	Unit Testing in Python
	An Exercise


