
CSC323 2010S Software Design 

Class 04: Talking About Objects: Using UML
Held: Thursday, February 4, 2010

Summary: We begin thinking more deeply about object-oriented perspectives, focusing on the UML, a
notation for representing object-oriented design. 

Related Pages:

EBoard. 

Notes:

Beautiful Code reading for Tuesday: Chapter 4. 
Other reading for Tuesday: Chapter one of Head First OOAD. 
I’m going to try a mostly-lecture format for our exploration of today’s beautiful code. Let me know
what you think. 
Go to the summer research session today! 
EC: Friday’s CS Table: Pair Programming.

Overview:

Python Followup. 
Beautiful Code: Multidimensional Arrays in NumPy. 
Thinking about object-oriented programming. 
UML: What and why. 
UML: Classes and interfaces. 
UML: Processes and computation. 
UML: Q&A.

Python Continued: Binary Search

Beautiful Code: Multidimensional Arrays in NumPy
Preliminaries

Background: 
NumPy is a popular numerical package for Python 
NumPy supports multi-dimensional arrays, which are useful

The problem: We’re going to write a lot of code that does something with each element in a
multi-dimensional array 

Some of it will be written in C 
Some of it will be written in Python 

1

http://www.cs.grinnell.edu/~rebelsky/Courses/CSC323/2010S/


How can we make it efficient and elegant
Primary areas of chapter: 

Internal representation of multi-dimensional arrays in NumPy 
Ways to step through the elements of those arrays

Theses: 
The internal representation is cool 
Thinking at the Python level can help you program at the C level 
Modeling with iterators helps you think about problem solving 
Efficiency matters

Background: Storing Multidimensional Arrays

For the basic multidimensional arrays (that is, ones that are not sliced), NumPy 
Uses a contiguous chunk of memory 
Lays the array out in what seems to be row-major order.

For example, a 4x3x2 array would have the elements arranged as follows: 
[0,0,0]; [0,0,1]; [0,1,0]; [0,1,1]; [0,2,0]; [0,2,1]; [1,0,0]; [1,0,1], [1,1,0], [1,1,1]; ...

This layout makes it fairly easy to determine where any element is. 
For a one dimensional array of size A, element a is at offset a. 
For a two dimensional array of size AxB, element [a,b] is at offset a*B+b 
For a three dimensional array of size AxBxC, element [a,b,c] is at offset (a*B+b)*C+c or
(a*B*C + b*C + c) 
And so on and so forth

Background: Slicing Multidimensional Arrays

Two basic strategies: 
When you slice, make a copy 
When you slice, build a structure that has a pointer to the original array and info about the slice.

The sharing strategy saves space and time 
The sharing strategy potentially creates problems with aliasing 

But some people like the aliasing
The sharing strategy complicates the code you use to access elements (but not too much) 

In essence, you need to take starting position and stride into account in the formula.

Back to the problem: Iterating arrays

For a non-sliced array, it’s easy: You just repeatedly increment the pointer until you hit the end. 
For a sliced array, it’s a bit harder: You need to check where you are and do different things in
different cases. 

Straightforward but error prone
You can also use recursion, but some people worry about the overhead of recursive calls (and the
danger of overflowing the stack). 
So, what’s the big issue here? 

Each time you need to iterate an array, you need to copy a big chunk of code.

2



Making it beautiful: Iterators

An idea: Why not encapsulate the state of the iteration? 
That encapsulated state is an iterator. 
Iterators provide some simple operations, such as next and get and end?. 
An object-oriented approach: We’ve turned a control structure into an object

A functional perspective

We could also have turned the big chunk of code to copy into a higher-order function. 
But that tends to be less efficient. 
It would, however, allow us to avoid the overhead the author complains about for non-sliced arrays. 

Hmmm ... should I show you code.

Questions and answers

See the notes on the reading.

Thinking About Object-Oriented Programming
What, in your mind, are the distinguishing features of object-oriented programming? 
Why are these features important?

The UML
The UML == The Unified Modeling Language 
A visual notation for representing key issues in the design of an object-oriented program. 
Observation: We like to communicate things visually. But for a visual notation to work well, we have
to agree upon what the symbols mean. 
Can be used prospectively or retrospectively 
Three traditional ways to think about the UML 

We use the UML to sketch out classes and their relationships while thinking about design. 
We use the UML to blueprint most of the details of a system. 
We use the UML as a programming language to implement a system.

Developed collaboratively by many of the big names in OOP in the early ages of the adoption of
OOA&D by industry. 
We’ll focus mostly on it as a tool for sketching. 
That is, we’ll use the UML to communicate important things about our systems to each other, but we
won’t try to dot every i and cross every t. 
Disclaimer: I don’t use the UML nearly enough in my own work.

3



The UML: Class Notation
What do we care about for classes? Here are some possibilities

The basic components of the class: 
The fields 
The methods

The role of the class in the inheritance hierarchy 
The other classes that the class uses (implicitly)

We will need notations for each of these things.

We may find that we need other notations, too.

The UML: Processes
Another common issue: What is the sequence of event calls as a particular task is accomplished.

Questions
Is the UML the only commonly used modeling language? 

Yes, it’s the most commonly used graphical modeling language for certain aspects of OO design,
particularly for class relationships. That’s it’s intent. CRC Cards are popular for modeling activities, but
that’s a separate issue.

What is the interaction between modelling and the methodology used in the construction of software?
There are an impressive variety of methodologies for object-oriented design alone, with no clear "best"
option. Is the choice of a modeling language as subjective?

Not really. The UML was designed to work for most methodologies.

According to Wikipedia, UML standards have been criticized as "unintelligible geekspeak"
(http://en.wikipedia.org/wiki/Unified_Modeling_Language#Criticisms). How should we as programmers
balance the need for readability with the time-saving benefits of shorthand and certain code conventions
and hacks? Is there a benefit in having some languages be relatively "unreadable" and other languages be
extremely "readable", such that programmers have a wide range of language types to choose from?

As you learned in Tutorial, it’s important to know who your audience is. Some people find Scheme
unreadable. The UML standards are not written for a general programmer audience; these standards are
intended to provide precise definitions of the different components of the language. You’ll find that any
modern language standard is similarly dense.

What is the purpose of having a machine-readable format for system structure? The implementation won’t
be done by computers, so why is it necessary for it to be in a machine-readable form?

4



A lot of the implementation is straightforward enough that it can be done by computers. In fact, there are
those who promote using the UML as a programming language.

Plus, it’s a lot easier to edit stuff in machine-readable form.

Can you explain how profiles and stereotypes work for UML extension?

No.

I viewed the members list at http://www.uml.org/. My question is how can we trust a standard
developed by a group with members of companies voting on its board to produce an unbiased modeling 
language?

Trust? If there are enough companies involved, they will generally build a language that provides no one
member with a competitive advantage.

The UML is a very highly regarded tool to programmers, but what are some of its drawbacks?

There’s a lot to the UML. If you’re someone who believes that you need to know the whole language to use
it, there’s a lot to grasp. And, as is often the case in large systems, different people may learn different
subsets, leading to it being less of a lingua franca.

Copyright © 2010 Samuel A. Rebelsky. This work is licensed under a Creative Commons
Attribution-NonCommercial 2.5 License. To view a copy of this license, visit 
http://creativecommons.org/licenses/by-nc/2.5/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA. 

5

http://www.uml.org/
http://creativecommons.org/licenses/by-nc/2.5/
http://creativecommons.org/licenses/by-nc/2.5/
http://creativecommons.org/licenses/by-nc/2.5/

	Class 04: Talking About Objects: Using UML
	Python Continued: Binary Search
	Beautiful Code: Multidimensional Arrays in NumPy
	Thinking About Object-Oriented Programming
	The UML
	The UML: Class Notation
	The UML: Processes
	Questions


