
Chapter 14

Inheritance

So far, we have used interfaces to define the contract between an abstract data type and its implementation.
In the context of Java’s type system, interfaces also induce a subtyping relationship between interface and
implementor type where we say that the implementor type is a interface type. This allows us to substitute
an instance of the implementor where ever the interface type is required. We called this flexibility (subtype)
polymorphism: the ability to write code that works with many types.

Interfaces are a powerful, fundamental mechanism for establishing such a subtyping relationship.
However, they carry with them an important limitation: we cannot provide any implementation to the
implementor of the interface. While the intent of an interface is that implementors provide different
implementation, sometimes we either want to (1) share parts of the implementation or (2) provide some
default implementation that implementors are free to override if desired. To do this, we require another
mechanism for sharing implementation in addition to establishing an “is a” relationship between types.

14.1 An Example: Shapes

Suppose that we need to represent a collection of shapes such as squares, circles, and triangles in our
program. We might design an interface that represents a shape:

// Shape.java
/**
* A shape, e.g., a square, circle, or triangle.
*/

public interface Shape {
/**
* @return the x-coordinate of this shape
*/

public int getX();

/**
* @return the y-coordinate of this shape
*/

public int getY();

/**

149

14.1. AN EXAMPLE: SHAPES CHAPTER 14. INHERITANCE

* @return the width of this shape
*/

public int getWidth();

/**
* @return the height of this shape
*/

public int getHeight();

/**
* @return the area of this shape
*/

public int getArea();
}

As well as provide some implementations of this interface:

// Rectangle.java
public class Rectangle implements Shape {

private int x;
private int y;
private int width;
private int height;

public Rectangle(int x, int y, int width, int height) {
this.x = x;
this.y = y;
this.width = width;
this.height = height;

}

public int getX() { return x; }
public int getY() { return y; }
public int getWidth() { return width; }
public int getHeight() { return height; }
public int getArea() { return width * height; }

}

// Circle.java
public class Circle implements Shape {

private int x;
private int y;
private int radius;

public Circle(int x, int y, int radius) {
this.x = x;
this.y = y;

150

CHAPTER 14. INHERITANCE 14.1. AN EXAMPLE: SHAPES

this.radius = radius;
}

public int getX() { return x; }
public int getY() { return y; }
public int getWidth() { return 2 * radius; }
public int getHeight() { return 2 * radius; }
public int getArea() { return (int) (Math.pi * (Math.pow(radius, 2))); }

}

Naturally, Square and Circle have different sorts of representation as they are different shapes.
However, they have something in common: the representation of their position as a coordinate pair.
Furthermore, the implementation of this coordinate pair is the same—two fields and two getters for each of
the components of the pair. Because an interface does not let us provide implementation details, we have
to duplicate this code in Square and Circle which is undesirable.

Instead of creating an interface to represent the abstract data type of a shape, we’ll instead create an
abstract class for this purpose:

/**
* A shape, e.g., a square, circle, or triangle.
*/

public abstract class Shape {
private int x;
private int y;

public Shape(int x, int y) {
this.x = x;
this.y = y;

}

/**
* @return the x-coordinate of this shape
*/

public int getX() { return x; }

/**
* @return the y-coordinate of this shape
*/

public int getY() { return y; }

/**
* @return the width of this shape
*/

public abstract int getWidth();

/**
* @return the height of this shape

151

14.1. AN EXAMPLE: SHAPES CHAPTER 14. INHERITANCE

*/
public abstract int getHeight();

/**
* @return the area of this shape
*/

public abstract int getArea();
}

A class marked abstract sits between an interface and a class:

• An abstract class cannot be instantiated. In other words, the expression new Shape(0, 0) will give
a compiler error complaining that you are trying to instantiate an abstract class. This makes sense
because Shape is an “abstract” entity, i.e., shapes do not exist but instead there are squares, triangles,
circles, etc..

• Because an abstract class is a class, it can provide implementation like a normal class.

• An abstract class can optionally mark methods as abstract. An abstract method does not have
an implementation; a class that extends this abstract class will need to provide an implementation of
this method.

Like interfaces, we can declare a subtype relation between an abstract class and a normal class. However,
rather than implementing an interface, we say that the (normal) class extends the abstract class.

// Rectangle.java
public class Rectangle extends Shape {

private int width;
private int height;

public Rectangle(int x, int y, int width, int height) {
super(x, y);
this.width = width;
this.height = height;

}

public int getWidth() { return width; }
public int getHeight() { return height; }
public int getArea() { return width * height; }

}

// Circle.java
public class Circle implements Shape {

private int radius;

public Circle(int x, int y, int radius) {
super(x, y);
this.radius = radius;

}

152

CHAPTER 14. INHERITANCE 14.2. RESTRICTIONS ON CLASS INHERITANCE

public int getWidth() { return 2 * radius; }
public int getHeight() { return 2 * radius; }
public int getArea() { return (int) (Math.PI * (Math.pow(radius, 2))); }

}

By extending the Shape abstract class (using the extends clause on the class declaration), both Circle and
Rectangle inherit the state and behavior defined by Shape. We say that Shape is the parent class or super
class of Circle and Rectangle. Conversely, we say that Circle and Rectangle are subclasses of Shape.
Namely, they both possess two fields, x and y of type int and two getter methods getX() and getY(). To
extend the Shape class, Rectangle and Circle must provide implementations for the abstract methods
getWidth(), getHeight(), and getArea().

However, since we inherit these fields, how do we initialize them? Note that because x and y are both
declared as private in Shape, we cannot access them from Square or Circle. This does not mean we
do not inherit them, it just means that their names are not visible from within Square or Circle. To
initialize these fields, we must access the constructor of the Shape class. To do this, we use a super class
constructor invocation as the first line of the constructors of Circle and Rectangle. The syntax of a super
class constructor invocation is:

super(<expr>, ..., <expr>);

You can think of super as standing in for the name of the super class. For example, in Circle, we invoke
the Shape constructor that takes values to initialize x and y with the call super(x, y).

By extending Shape, Rectangle and Circle are both considered subtypes of Shape, just like with an
interface. In particular, the following code snippet works as you’d expect:

Shape shape1 = new Square(0, 0, 100, 100);
Shape shape2 = new Circle(10, 10, 100);
System.out.println(shape1.getArea()); // 100 * 100
System.out.println(shape2.getArea()); // pi * 100^2

We can also extend normal classes, not just abstract classes. For example, if we wish to specialize
Rectangle further to a Square, we can extend Rectangle:

public class Square extends Rectangle {
public Square(int x, int y, int length) {

super(x, y, length, length);
}

}

This might seem redundant; we could simply create a square by specifying a Rectangle with equal width
and height. However, by encoding a Square as a class, the type checker can now ensure that the user
provides squares when necessary. Thus we turn what would otherwise be runtime errors into compile time
errors.

14.2 Restrictions on Class Inheritance

After walking through this example, it seems like class inheritance is strictly more powerful than interface
extension. In addition to providing abstract methods, we can also provide implementation—both fields
and methods—with an abstract class. So what’s the downside?

153

14.3. VISIBILITY AND DYNAMIC DISPATCH CHAPTER 14. INHERITANCE

The downside is that a class may only extend a single class, but it may implement multiple interfaces.
Java elects to be a single-inheritance object-oriented programming language because it turns out there are
lots of complications involved with multiple inheritance, e.g., what happens if two super classes provide a
field or method with the same name? Rather than dealing with these problems (the diamond problem), Java
tries to keep things simple by requiring that a class can only inherit from at most one super class.

14.3 Visibility and Dynamic Dispatch

Previously, we explored a particular case study of using inheritance over interface implementation: we want
to share some implementation details between subclasses. It turns out that this one addition complicates
the mechanics of our program greatly. We’ll now turn our attention to looking at this mechanics in detail,
in particular, three language features:

1. Visibility with subclasses.

2. Accessing and invoking subclass state and behavior.

3. Overriding subclass behavior.

14.4 Visibility with Subclasses

Recall that a member marked private was only accessible to code within the declaring class, for example,

public class C {
private int x;
private int foo() { return 0; }
public C() { this.x = 5; }
public static void test() {

C c = new C();
System.out.println(c.x); // 5
System.out.println(c.foo()); // 0

}
}

class Bad {
public static void test() {

C c = new C();
System.out.println(c.x); // error: x not visible
System.out.println(c.foo()); // error: foo not visible

}
}

We use privacy modifiers to hide implementation details from clients of a class. However, subclasses
(established with inheritance and extends) sit somewhere between “client” and “author”. On one hand,
they are a client of their superclass in the sense that they are using its functionality. On the other hand, it
is plausible that they will need direct access to some of these implementation details, e.g., to update a field
based on the subclass’s refine behavior.

154

CHAPTER 14. INHERITANCE 14.4. VISIBILITY WITH SUBCLASSES

Therefore, we need a refined accessibility modifier that allows subclasses to access superclass members
without exposing those members to everyone. This accessibility modifier is protected. For example,
consider modifying a subset of our Shape class from before with protected members:

public abstract class Shape {
protected int x;
protected int y;

public Shape(int x, int y) {
this.x = x;
this.y = y;

}

/**
* @return the x-coordinate of this shape
*/

public int getX() { return x; }

/**
* @return the y-coordinate of this shape
*/

public int getY() { return y; }
}

Now, our Rectangle subclass can modify the x and y fields directly:

public class Rectangle {
// ...
public void translate(int dx, int dy) {

this.x += dx;
this.y += dy;

}
}

So why not make all our variables private instead of protected? Again, this becomes a question of
least priviledge. Exposing, in particular, a field allows us to perform two operations:

1. Writing to the field.
2. Reading from that field.

If a superclass does not wish to allow subclasses both of these behaviors, then the field should be
private instead of protected. This is desirable because if there’s some invariant that exists between the
superclass’s fields (e.g., in our ArrayStack implementation, that the top field always pointed to the top of
the stack in the data array), we would like to not give a subclass the opportunity to mess it up.

As a rule of thumb, if you predict that your subclasses will not need to both read from and write to a
field (and you do not need to “wrap” the reading/writing, e.g., to perform a pre-condition check), then that
field should be marked private rather than protected to prevent this behavior. This is the same logic
that you should apply to determining if a field ought to be public. In practice, this means few of your
fields will be marked protected or public because you will rarely want to expose fields in this manner.

155

14.5. OVERRIDING SUBCLASS BEHAVIOR CHAPTER 14. INHERITANCE

14.5 Overriding Subclass Behavior

One of the important benefit of extending a class is to inherit its (public and protected) fields and methods.
However, what if we wish to override the behavior of one of these methods? The canonical example is a
superclass that provides some default behavior with the intention that a subclass provide more refined
behavior. As a toy example, consider a small class hierarchy for animals.

public abstract class Animal {
private boolean alive;
public Animal() {

this.alive = true;
}
public boolean isAlive() { return alive; }
public void makeNoise() { System.out.println("Ding"); }

}

public class Dog extends Animal {
public Dog() { /* Implicitly calls super() */ }

}

public class Cat extends Animal {
public Cat() { /* Implicitly calls super() */ }

@Override
public void makeNoise() { System.out.println("Meow"); }

}

public class Lion extends Cat {
public Lion() { /* Implicitly calls super() */ }

@Override
public void makeNoise() { System.out.println("Roar"); }

}

Here, we have a class hierarchy consisting of four classes. The relationship can be drawn as follows:

Animal
|

| |
Cat Dog
|

Lion

Where Animal is the top-most superclass, a Cat is an Animal, a Dog is an Animal (but is not a cat), and a
Lion is a Cat. Animal provides a private field and public method for determining if an Animal is alive.
Cat, Dog, and Lion all inherit these members.

156

CHAPTER 14. INHERITANCE 14.5. OVERRIDING SUBCLASS BEHAVIOR

However, Animal also specifies a method makeNoise with a generic sound suitable as a default for any
Animal. The Dog class inherits this generic sound, so the following code produces the expected result:

Dog d = new Dog();
d.makeNoise(); // Ding

This is, of course, not the sound that a Dog makes. We need some way of providing our own class-specific
behavior makeNoise. Cat and Lion both do this by overriding the makeNoise method to provide their
own implementation. For example, the following code:

Cat c = new Cat();
Lion l = new Lion();
c.makeNoise(); // Meow
l.makeNoise(); // Roar

produces refined behavior for makeNoise based on the type of the object we call the method on: “Meow”
for cats and “Roar” for lions. To override a method in a subclass, we simply include an implementation
of that method in the subclass. However, we also include an annotation on this method, @Override, to
note that this method declaration intentionally overrides the makeNoisemethod declared in the superclass.
(Note that the @Override annotation is a new addition in Java 1.5 and is technically optional. However,
you should always use @Override to be explicit when you are overriding superclass behavior.)

Method overriding seems straightforward. However, things quickly become less clear when we combine
method overriding with subtyping. Consider the following variable declarations, method calls, and their
results:

Animal a1 = new Dog();
Animal a2 = new Cat();
Animal a3 = new Lion();
Cat c = new Lion();
a1.makeNoise(); // Ding
a2.makeNoise(); // Meow
a3.makeNoise(); // Roar
c.makeNoise(); // Roar

Note that even though the type of the variable is Animal in the first three cases, we use the actual type of
the object assigned to the variable to determine which method to call. We distinguish between the two
sorts of the types accordingly:

• The static type of a value is the type of the value as it is known to the compiler. In the case of variable
declarations, this is the type of the declared variable. The static type determines what is the allowable
set of methods we can call on an object.

• The dynamic type of a value is the actual type of the object. The dynamic type determines what
implementation of a method we actually invoke.

For example, for the above code, here are the static and dynamic types for the various combinations of
variable declarations and assignment that our subtyping relationships allow:

Animal a1 = new Dog(); // static type: Animal, dynamic type: Dog
Animal a2 = new Cat(); // static type: Animal, dynamic type: Cat

157

14.6. THE MECHANICS OF DYNAMIC DISPATCH CHAPTER 14. INHERITANCE

Animal a3 = new Lion(); // static type: Animal, dynamic type: Lion
Cat c1 = new Cat(); // static type: Cat, dynamic type: Cat
Cat c2 = new Lion(); // static type: Cat, dynamic type: Lion
Lion l = new Lion(); // static type: Lion, dynamic type: Lion
Dog d = new Dog(); // static type: Dog, dynamic type: Dog

We can use this information to determine which of the method implementations actually fire for any call to
makeNoise.

14.6 The Mechanics of Dynamic Dispatch

Recall the rules for resolving overridden method calls:

1. We use the static type of an expression to determine whether the method call typechecks.

2. We use the dynamic type of an expression to determine which method we actually invoke.

Note that the static type is usually a more general type (the supertype) than what we have and the dynamic
type is the more specific type (the subtype).

This rule helps us resolve method calls. However, this resolution process becomes tricky with trickier
set ups of inheritance hierarchies. To better understand the process of resolving overridden method calls,
we’ll study how this is implemented in Java with our mental model of computation.

14.6.1 Objects on the Heap

Recall that all objects are allocated on the heap. An object is a collection of fields along with a tag that says
what type the object is, its dynamic type. More concretely, consider the following basic class hierarchy:

public class C1 {
public int x;
public void foo() { System.out.println("C1.foo()"); }

}

public class C2 extends C1 {
public int y;
@Override
public void foo() { System.out.println("C2.foo()"); }
public void bar() { System.out.println("C2.bar()"); }

}

public class C3 extends C1 {
public int z;
@Override
public void foo() { System.out.println("C3.foo()"); }
public void baz() { System.out.println("C3.baz()"); }

}

public class C4 extends C3 {

158

CHAPTER 14. INHERITANCE 14.6. THE MECHANICS OF DYNAMIC DISPATCH

@Override
public void foo() { System.out.println("C4.foo()"); }

}

Instances of each of these classes look like this on the heap:

------- ------- ------- -------
| C1 | | C2 | | C3 | | C4 |
|x| 0 | |x| 0 | |x| 0 | |x| 0 |
------- |y| 0 | |z| 0 | |z| 0 |

------- ------- -------

The process of resolving overridden methods is called dynamic dispatch. How does the dynamic dispatch
process work? The key insight is that the type tag associated with each object is in actually a pointer to a
table containing the methods for that class. For example, for C3 we have:

| C4 |------> [vtable for C4]
|x| 0 |
|z| 0 |

This table of methods is called a virtual table, or vtable, owing from its C++ roots where overridable
methods are annotated with the virtual keyword. The vtable for a class contains an entry for every
overridden method in the class as well as a pointer to the superclass’s vtable:

-------------- -------------- --------------
C4 vtable	---->	C3 vtable	---->	C1 vtable		
super vtable	----		super vtable	----		super vtable
C4.foo()		C3.foo()		C1.foo()		
-------------- | C3.baz() | --------------

Suppose that we have a variable declaration and method invocation:

C1 c = new C4();
c.foo();

How does dynamic dispatch proceed? We first note that this code typechecks and compiles because C1, its
static type, declares a foo() method. Then, at runtime, we:

1. Follow the vtable pointer of the object we invoke the method.

2. Lookup the desired method in the vtable.

3. If the method exists, we invoke that method. Otherwise, we follow the superclass vtable pointer and
repeat the process.

For the above code, this amounts to looking at the vtable pointer for the C4 object. In the corresponding
table, we find an entry for C4.foo() so we invoke this version of foo(). In contrast, consider this method
invocation instead:

159

14.6. THE MECHANICS OF DYNAMIC DISPATCH CHAPTER 14. INHERITANCE

C1 c = new C4();
c.baz();

We follow the vtable pointer for the C4 object and look up an entry for baz(). We do not find such an
entry, so we follow the superclass vtable pointer to C3’s vtable. We then look for a baz() entry, find such
an entry, C3.baz(), and invoke that method.

As an exercise it’s a good to consider all of the possible combinations of variable assignments we can
have with our subtyping relationship and invocation of methods on those variables. Those combinations
should either result in a type error at compile time or the invocation of one of the versions of these methods.
Try writing out these various combinations and use this mental model of dynamic dispatch to predict the
result.

14.6.2 The Object Class

While C2, C3, and C4 above have superclasses, it appears that C1 does not. However, this turns out to be
untrue; C1 has an implicit superclass called Object. Object is the root of the class hierarchy in Java—all
objects are ultimately subclasses of the Object class. Because of this, we say that Java has a unified class
hierarchy where all classes have a common base class.

The Object class provides a number of methods available to all objects in Java. These include the familiar
toString()method that returns a String representation for an object. All objects in Java have this method,
and it is used to implicitly convert an object to a String, e.g., when printing it with System.out.println.
Another important method is the equals() method. Here is the signature for equals along with the
implementation provided by Java:

/** @return true if this object is "equal" to the other object */
public boolean equals(Object obj) {

return this == obj;
}

By default, equals uses reference equality which checks to see if the argument is the exact same object as
the one we invoke equals on. If we want to determine equality between objects that we define, we ought to
override equals behavior to be appropriate for the objects in question, typically structural equality where
we check to see if the fields of two objects are equal recursively. To see this in action, consider adding an
equals method for our good old Point class

public class Point {
private int x;
private int y;
// ...

}

Intuitively, how should we implement equality between two points? The interpretation of structural equality
for points says two points are equal if and only if their components are equal.

This is easy enough to state, but we immediately run into problems implementing this behavior in our
equals method:

// in class Point
@Override
public boolean equals(Object obj) { /* ... */ }

160

CHAPTER 14. INHERITANCE 14.6. THE MECHANICS OF DYNAMIC DISPATCH

The problem is that the type of the argument is Object so that if we tried to access the x field of the
argument, we get a type error:

public boolean equals(Object obj) {
boolean isXEq = this.x = obj.x; // type error: Object doesn't have an x field

}

This is because we may call equalswith an argument that is not a Point—any class is a subclass of Object
after all.

So as a first step, we must check to see if the argument is actually a Point object. To do this, we use
the instanceof operator:

public boolean equals(Object obj) {
if (obj instanceof Point) {

// compare fields
} else {

return false;
}

}

Think of instanceof as a binary operator that takes an object on the left-hand side and a class name on
the right-hand side. instanceof evaluates to true if the object on the left-hand side is an object that is a
subtype of the right-hand side.

When the input is not a Point, we can immediately return false. When the input is a Point, we
know that obj is really a Point even though its static type is Object. We need a way to tell the compiler
“hey, I know this thing is really a Point—trust me”. The mechanism we use to do this is a class cast.

public boolean equals(Object obj) {
if (obj instanceof Point) {

Point p = (Point) obj;
return this.x == p.x && this.y == p.y;

} else {
return false;

}
}

A class cast looks like a normal cast except that it casts objects between types. This particular kind of
cast is called a downcast because we are casting from a more general type—Object—to a more specific
type—Point. In other words, we are casting down the class hierarchy. The class cast makes a runtime check
to ensure that expression evaluates to an object value that really is the one promised by the cast, throwing a
jiClassCastException if this is not the case. However, we know by virtue of the instanceof check that we
indeed have a Point object so this cast is safe.

In general, our overridden equals methods have the following form:

public boolean equals(Object obj) {
// Check to see if input has the appropriate object type
// Downcast to the object type
// Perform a structural equality check on this object and the input

}

161

14.7. IS-A VERSUS HAS-A RELATIONSHIPS CHAPTER 14. INHERITANCE

14.7 Is-a Versus Has-a Relationships

When designing a program in an object-oriented programming language, we decompose the program into
a collection of objects. In our programs, objects are related in two primary ways:

1. Has-a relationships, e.g., an employee has an age.

2. Is-a relationships, e.g., an engineer is an employee.

We realize the first kind of relationship with fields. For example, an Employee class would have an age
field. We realize the second kind of relationship with interface implementation or class inheritance. For
example, we may have either an Employee interface or class and an Engineer class that implements or
extends Employee, respectively.

How do we choose between the two sorts of relationships? In some cases, the choice is obvious just
by considering the words “has-a” and “is-a”. In the above examples, it seems very wrong to consider an
employee an “age” or say that an engineer has an employee. In this sense, the natural meaning of the objects
defines the relationship between objects.

However, we can concoct scenarios where we could interpret the potential relationship between objects
in multiple ways. For example, we might say:

• An engineer is an employee.

• An employee has a title that is “engineer”.

Both are perfectly reasonable interpretations of the relationship between “engineer” and “employee”.
We can either represent an engineer as a class that inherits from/implements the employee class/interface,
or a “title” field of the employee class. But which of them do we choose?

When our semantic interpretation of our objects’ relationships is ambiguous, wemust resort to reasoning
about the operational implications of our design choice. In other words, if we recognize the relationship as
a field (has-a) or a subtype (is-a), what is the effect on the rest of our program? What are we able to do
with one programming construct that we cannot do with the other? What difficulties do we encounter
using one construct over the other?

Recall that the primary feature that both interface implementation and class inheritance provide is
subtyping. That is, we can substitute a subtype (a class that implements an interface or inherits from a
superclass) anywhere that a supertype is expected. This gives us the ability to write (subtype) polymorphic
code—code that operates over many types. Note that this feature has to do with the (Java) type of an object.
So if a disputed property could function as part of the type of an object, then this sort of question between
is-a and has-a arises.

For example, we may decide that all employees receive a salary. Therefore, we can enforce this by
specifying a getMonthlySalary() method in the Employee class. When we need to gather up the total
amount of money we need to pay out to the company, we can simply call the method uniformly on each
Employee:

List<Employee> employees = /* ... */ ;
int total = 0;
for (Employee e : employees) {

total += e.getMonthlySalary();
}
System.out.println("The total is: " + total);

162

CHAPTER 14. INHERITANCE 14.7. IS-A VERSUS HAS-A RELATIONSHIPS

Implicitly throughout this code, the subtyping relationship between Employee and its subclasses is
enforced at compile time via typechecking. In contrast, if we had a field of type String denoting the title of
the employee, we would need to write the getMonthlySalary() method of the Employee class as follows:

public int getMonthlySalary() {
if (this.title.equals("Engineer")) {

return 10000;
} else if (this.title.equals("CEO")) {

return 50000;
} else if (/* other cases */) {

// ...
} else {

return /* Some default amount... */
}

}

Note that this method is very brittle. Because the case analysis is over Strings, we cannot ensure at compile
time that:

1. We provide the names of the titles correctly, i.e., there are no typos, and

2. We have provided cases for all possible titles.

In addition to substitution via subtyping, we also gain static typechecking by using inheritance to model
this relationship. Thus if we need to take advantage of subtype polymorphism, we ought to do so via
interfaces or inheritance.

However, otherwise if there’s no compelling reason to use subtype polymorphism, we ought to stick
with has-a relationships and fields, also known as composition. Composition has the benefit of being:

1. Simpler. We spent little time talking about the mechanics of fields because they are straightforward
to understand relative to inheritance.

2. Flexible. Exploiting inheritance requires that we create classes which must be built at compile time
unless we use a complicated mechanism like reflection to load classes dynamically. A field on the
other hand can take easily take any value that it domain allows.

Imagine in our employee example that we did not know the full set of job titles ahead of time, e.g.,
because we’re working on a general-purpose employee management system not tied to any one corporate
structure. Here, we are unlikely to be able to take advantage of typing checking because the set of possible
jobs is not fixed at compile time. In this situation, it may make sense to use composition rather inheritance
to represent these positions.

There is a modern maxim that you will likely hear:

Favor composition over inheritance.

This is sound advice at a surface level. Composition is less complicated than inheritance, so you should
favor the simpler thing over the more complicated thing. However, as we have seen, there are specific cir-
cumstances when you want inheritance over composition: when the relationship involved can be construed
as “type-defining”and the benefits of inheritance—subtype polymorphism and static type checking—make
sense in context.

163

14.8. THE EXPRESSION PROBLEM CHAPTER 14. INHERITANCE

14.8 The Expression Problem

When we have identified a relationship between objects as being “type-like”, this raises questions of whether
we identify the relationship as is-a or has-a. One particular situation where this arises is when we need to
specify behavior that performs case analysis on a set of types. In this situation, using an is-a relationship
via interface implementation or inheritance shines because we can really put the type system to work for
us. Although sometimes, exploiting this relationship is less intuitive than you might imagine.

For example, consider the employee example that we’ve used throughout our discussion of inheritance.
Suppose that we did not use inheritance and, instead, defined the type of employee by their job title, a field.
And now suppose that we wanted to define a method to retrieve the salary of the employee based on their
job title. The method would look like this:

public int getSalary(Employee e) {
if (employee.getTitle().equals("engineer")) {

return 100000;
} else if (employee.getTitle().equals("chef")) {

return 75000;
} else if (employee.getTitle().equals("ceo")) {

return 1000000;
} else {

// A default salary
return 0;

}
}

This method is unsatisfying for a pair of reasons:

1. By encoding the title as a string, we may have some flexibility in specifying jobs at runtime that we
didn’t anticipate at compile time. However because of this, we lose the ability to check that we have
specified the correct job title at compile time. For example, we may do something silly like misspell
“engineer”.

2. Related, in addition to being unable to check for simple typos like this at compile time, we are also
unable to check for exhaustiveness—did we cover all the possible cases of employees?

There is also a third reason why this approach is unsatisfying. In addition to typos and exhaustiveness,
any errors that we introduce with this approach occur at runtime. Furthermore, the errors are silent. For
example if we misspell or forget “engineer”, then the method return 0 which will not manifest itself as an
error until we do some calculation involving the engineer’s salary. This is nearly a worst-case scenario
for us! We want errors checked at compile time at the point where they occur, not checked at runtime
potentially far away from their origin.

We could add inheritance into the mix. However, inheritance alone is not enough, for example, if we
introduced Engineer, Chef, and CEO classes that extend Employee, we might try the following:

public int getSalary(Employee e) {
if (employee instanceof Engineer) {

return 100000;
} else if (employee instanceof Chef) {

return 75000;

164

CHAPTER 14. INHERITANCE 14.8. THE EXPRESSION PROBLEM

} else if (employee instanceof Ceo) {
return 1000000;

} else {
// A default salary
return 0;

}
}

However, this code is only marginally better than the previous approach. The fact that the different jobs
are encoded as types means that the compile will catch typos. However, exhaustiveness is not checked and
errors are still silent.

To cover all of these bases, we must combine inheritance with dynamic dispatch. Thus, we arrive at the
initial example we used to motivate dynamic dispatch:

public abstract class Employee {
public abstract int getSalary();

}

public class Engineer extends Employee {
@Override
public int getSalary() { return 100000; }

}

public class Chef extends Employee {
@Override
public int getSalary() { return 75000; }

}

public class Ceo extends Employee {
@Override
public int getSalary() { return 1000000; }

}

This final approach allows us to check for typos and exhaustiveness at compile time. Note that exhaustiveness
is checked because the abstract class requires that any subclass implement the getSalary() method. If
we need to implement other operations that also perform case analysis on the possible job types, we:

1. Introduce the method in the superclass. If default behavior is required, we give a default implementa-
tion. Otherwise, we mark it abstract so that implementors are forced to override the method.

2. Override the method in each subclass with the case-specific behavior.

This sort of design—defining data by cases and then operations over that data via case analysis—is
common place in computer programs. To summarize, the key features of good design in this space is:

• Extensibility of new cases.

• Extensibility of new operations.

• Statically (type) checked.

165

14.9. CASE STUDY: EXCEPTIONS CHAPTER 14. INHERITANCE

• Separate compilation, the ability to write new code without having to recompile existing code.

Note that the approach that we have settled on does not cover all of these desiderata. While we have static
typechecking, the ability to add new cases via additional subclasses, and separate compilation when adding
new subclasses, adding new operations is a bit of a bother. Every new operation we add becomes a new
method in the superclass and a series of overridden methods in the subclasses. The addition of this new
method requires that we recompile all of the subclasses since they have been modified to accommodate
this new method. Furthermore, the logic for this operation is spread out among all the subclasses which is
problematic for code understanding.

From a programming language design perspective, this problem is known as the expression problem.
It is difficult to satisfy all four of these desiderata simultaneously and different languages (in particular,
language paradigms such as object-oriented versus functional programming) make trade-offs in various
dimensions when solving this problem. In Java, as long as we leverage inheritance and dynamic dispatch,
we can get close, although you should be aware that the approach is still unsatisfying in the ways we have
discussed.

14.9 Case Study: Exceptions

Previously, we discussed how to raise exceptions using the throw statement:

throw new IllegalArgumentException();

The subject of the throw statement is an expression that evaluates to an exception object. This led to the
question of whether we could define our own exceptions. Indeed we can via subclassing; exceptions turn
out to be a great—if not controversial—example of inheritance in Java.

14.9.1 Defining Exceptions

In Java, we define our own exception by writing a subclass for the Throwable class or one of its subclasses.
The Throwable class hierarchy looks like this:

Throwable
|

| |

Exception Error
| |

----------------- ...
| | (3)
... RuntimeException
(1) |

...
(2)

You can create subclasses for your exception at any of the three points indicated above. Each point represents
one of three possible types of exceptions in Java:

166

CHAPTER 14. INHERITANCE 14.9. CASE STUDY: EXCEPTIONS

1. Checked exceptions are subclasses of Exception (or its subclasses—technically any subclass of
Throwable that is not also a subclass of Error or RuntimeException). Checked exceptions are ex-
ceptional conditions that a program ought to anticipate and recover from. For example, the Scanner
class’s constructor throws FileNotFoundException if the given file does not exist on disk. This is
an exceptional condition, but one that is easily recoverable from—inform the user and exit or ask the
user for another file.

2. Unchecked exceptions or runtime exceptions are subclasses of RuntimeException. These exceptions
arise from conditions internal to the application that are not recoverable from. An example of an
unchecked exception is the IllegalArgumentException that we’ve thrown when a pre-condition
on a method is violated. In such a scenario, we don’t want to try to recover from this error as the
condition should never occur.

3. Errors are subclass of the Error class. They are similar to unchecked exceptions in that they are
situations in which the program cannot recover, but the conditions in which they occur are external to
the application, rather than internal. For example, if we run out of memory—a situation that is not a
problem with our program, per se, and is not recoverable—Java will throw a VirtualMachineError.

In many cases, the exceptions provided by the Java standard library are sufficient. For example,
the descendants of RuntimeException such as IllegalArgumentException, NullPointerException,
and IllegalStateException, cover a lot of the common cases of pre-condition and invariant violation
that we might encounter in our code. However, if we would like to provide a more specific exception, e.g., a
BankAccountNegativeException for when the invariant that our bank account balance goes negative,
we can create a subclass of the appropriate type.

14.9.2 Handling Exceptions

Checked exceptions require that we recover from them in some way. Java provides two mechanisms for
this:

1. The throws clause on methods indicating that a method generates an exception and that any caller
of this method must handle it. For example, when we created a new Scanner with a File, we had to
add throws FileNotFoundException to indicate that the method that contained this code could
throw this exception.

2. Try-catch statements which allow us to try to execute some code that may throw an exception and
then catch any exceptions that arise from them.

In Java, all checked exceptions must be dealt handled in one of these two ways—throws clauses or
try-catch. While you can use these mechanisms to document and catch runtime exceptions and errors, it is
strongly advised not to do so—these exceptions occur specifically because you cannot recover from them.

The try-catch has the following form, e.g., to properly create a Scanner from a File:

import java.io.FileNotFoundException;
// ...
Scanner in = null;
File file = new File("foo.txt");
if (file.exists() && !file.isDirectory()) {

try {
in = new Scanner(new File("foo.txt"));

167

14.9. CASE STUDY: EXCEPTIONS CHAPTER 14. INHERITANCE

} catch (FileNotFoundException e) {
System.out.println("Error: file not found " + e.getMessage());

}
if (in != null) {

// Use the scanner...
}

}

Here, we try to create a scanner that reads from foo.txt. If no exception is thrown, then in is loaded
with an appropriate Scanner object. If the line in = new Scanner(new File("foo.txt")) throws a
FileNotFoundException, then control flows to the exception handler for the FileNotFoundException,
i.e., the block of code that prints the error message. In either case, control flows to the line after the
try-catch block—the if-statement. We check to see if in is null after the try-catch block because if
FileNotFoundException is thrown, then in will never be loaded with a Scanner object.

Note that even though we check to see if the file exists, we still need to use a try-catch to catch the
potential FileNotFoundException. This is because FileNotFoundException is a checked exception,
but it is marked as such because even though we have done the proper check, the file might be deleted
from disk or made unavailable after the check executes! Also note that we cannot declare the Scanner
variable inside the try-catch block. This is because of a technicality with scoping. If we wrote this code:

import java.io.FileNotFoundException;
// ...
if (file.exists() && !file.isDirectory()) {

try {
Scanner in = null;
File file = new File("foo.txt");
in = new Scanner(new File("foo.txt"));

} catch (FileNotFoundException e) {
System.out.println("Error: file not found " + e.getMessage());

}
// Error: `in` not in scope!
if (in != null) {

// Use the scanner...
}

}

We receive a compiler error stating that the occurrence of in in the conditional is not in scope. This is
because the lifetime of a local variable is the curly braces that enclose it. Therefore, the lifetime of in in
this case is the try-block. We want in to exist outside of the try-block, so we have to declare it outside of
the try-block.

We can catch any number of exceptions in a try-catch block by nesting branches, e.g.:

try {
// Code that throws either FileNotFoundException
// or IndexOutOfBoundsException...

} catch (FileNotFoundException e) {
// If FileNotFoundException is thrown...

168

CHAPTER 14. INHERITANCE 14.9. CASE STUDY: EXCEPTIONS

} catch (IndexOutOfBoundsException e) {
// If IndexOutOfBoundsException is thrown...

}

Furthermore, a catch block catches a specified exception aswell as any of its subtypes. FileNotFoundException
is a subtype of IOException, so we could use IOException in its place if we also anticipated other subtypes
of IOExceptions to be thrown or an IOException itself (usually reserved for general IO problems):

try {
// Code that throws any IOException...

} catch (IOException e) {
// Catches any IOException or a subclass of IOException.

}

Because of subtyping, we could theoretically catch any exception—checked or unchecked—by catching
Exception. This is typically used as a “catch-all” catch case:

try {
// Code that can throw an exception

} catch (Exception e) {
// Handles any (checked) exception...

}

However, this is usually undesirable because if you are required to handle a particular (checked) exception,
you will likely want to handle it in its own specific way, e.g., issuing an error to the user. Using this
“catch-all” style does not allows this. Worse yet, is combining “catch-all” with swallowing the exception:

try {
// Code that can throw an exception

} catch (Exception e) {
// Do nothing if we receive an exception

}

This silently handles any checked exception that is raised by the code in the try-block. While convenient,
again, you will likely need to have some recovery logic for each specified checked exception that is raised.
At the very least, you will want to avoid swallowing the unchecked exceptions that this code could throw
as these represent unrecoverable errors.

169

	14 Inheritance
	14.1 An Example: Shapes
	14.2 Restrictions on Class Inheritance
	14.3 Visibility and Dynamic Dispatch
	14.4 Visibility with Subclasses
	14.5 Overriding Subclass Behavior
	14.6 The Mechanics of Dynamic Dispatch
	14.6.1 Objects on the Heap
	14.6.2 The Object Class

	14.7 Is-a Versus Has-a Relationships
	14.8 The Expression Problem
	14.9 Case Study: Exceptions
	14.9.1 Defining Exceptions
	14.9.2 Handling Exceptions

