
Algorithms and OOD (CSC 207 2014S) : EBoards

CSC 207 2014S: Extra Session, Week 10

Overview

Admin
You ask questions.
I try to give answers, or at least direct you in the right direction.

Admin

CS table tomorrow.
New class project. Yay!

Factories
Why is Sam’s an interface and most of the ones out there are classes?

Sam’s were anonymous classes, so they were really classes.

Idea: Sometimes methods need to create objects on the fly, and we want them general: They should
be able to work with any object that meets certain criteria

E.g., a program might need multiple dictionaries
Issue: The client should be able to specify the kind of dictionaries to use.

Similar to the idea that we can write code that expects a Dictionary and someone can give that code
an AssociationList or a HashTable or ...
Difference: Need to create multiple objects.
Solution: Factories: Pass in something (method, object, etc.) that knows how to create objects that
match the goal

For Dictionaries

public interface DictionaryFactory<K,V>
{
 public Dictionary<K,V> dictionary(...);
} // interface DictionaryFactory

One factory for association lists

public class AssociationListFactory<K,V>
 implements DictionaryFactory<K,V>
{
 public Dictionary<K,V> dictionary(...)
 {
 return new AssociationList<K,V>();
 } // dictionary(...)
} // class AssociationListyFactory<K,V>

1

Another factory for association lists

public DictionaryFactory<K,V> df = new DictionaryFactory<K,V>()
 {
 public Dictionary<K,V> dictionary(...)
 {
 return new AssociationList<K,V>();
 } // dictionary(...)
 };

Lots of uses ... if we have lots of strings to parse, we might pass in the things that turn strings into objects

E.g., on the homework, we might have something that builds the "right" kind of numbers, and the
client could decide what the right kinds of numbers are.

Experienced Java programmers tend to use introspection in making factories.

Good Invariants for Problem 1
We have an iterative loop to do DNF and recursion to do the quicksorting.

Recursive quicksorting is hard. Probably a good problem for the next exam, except that you can
probably StackOverflow it.

The invariant is for DNF, not for Quicksort

Input

qsort(T[] values, int lb, int ub)

Goal:

Break into three parts (< pivot, = pivot, > pivot)

Post-picture

---+---+---+---+---
 | < | = | > |
---+---+---+---+---
 | | | |
 lb s l ub

Invariant

---+---+---+---+---+---
 | < | = | ? | > |
---+---+---+---+---+---
 | | | | |
 lb s i l ub

There are lots of other possibilities

2

---+---+---+---+---+---
 | ? | < | = | > |
---+---+---+---+---+---
 | | | | |
 lb ub

Cost of operations
How much does "Hello" + "Goodbye" take?

Builds a whole new string, so O(sum of lengths)
Note that print("Hello"); print("Goodbye") might therefore be much more efficeint than print("Hello"
+ "Goodbye")
From C: How much time do you expect strcat(t,s) to take?

s puts s at the end of t.

Copyright (c) 2013-14 Samuel A. Rebelsky.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

3

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC 207 2014S: Extra Session, Week 10
	Factories
	Good Invariants for Problem 1
	Cost of operations

