
Algorithms and OOD (CSC 207 2014S) : EBoards

CSC 207 2014S: Extra Session, Week 6

Overview

Admin
You ask questions.
I try to give answers.

Admin

Welcome to the people who live on the 3rd floor, or at least seem to.

Questions
Why don’t you like syntax coloring?

Distracting. Sometimes confusing.

Talk about good code design

Both process and product.
Thinking while you write
What results when you’ve thought
And what you look for after you’ve written (can I do this better?)

I was taught to always write general code.
You think more deeply when writing general code.

Agile suggests write code for a specific purpose; only generalize when you are tempted to copy and
paste.

You’re more likely to get it right / understand it in the specific-purpose case
And it takes effort to generalize
General code isn’t always needed, so it’s wasted effort

Having your own library of general code can make you a much more efficient programmer - just use
one of your library routines when you need it.

Process concepts:

Generality - Will this code work in multiple situtations; How do I make it do so?
Efficiency - How fast is this code likely to run?

Premature optimization is a waste of time
But you need to think about how slow/fast the methods you’re calling are, and try to avoid
recalling

Know and use library.
Be your own navigator.

1

Consider clarity.
Break the problem into smaller problems

But revisit that decision regularly
Small functions that interact nicely.

Have expectations of what the state of your code will be at various points in the program so that you
can check them.

In C, assert can be helpful.
In all languages, comments can be helpful.

"Know your assumptions"
Design the algorithm in "English", then go back and code

A bad example

for (int i = 0; i < str.length(); i++) { this.contents[start+i] = str.toCharArray()[i]; } // for

Problems

We don’t know the cost of str.length(), but as C programmers we should worry.
Conflicting issue: What if the string is changing? Sometimes it’s better to start with something
correct and then make it more efficient.
Many people worry about function calls in the header of for loops

We don’t know the cost of str.toCharArray(), we can assume it’s O(n), which would make our overall
algorithm O(n^2), where n is the length of str.

This is a big enough improvement that I don’t even need to profile.
That is, it is NOT premature optimization.

A better version

int strlen = str.length(); char[] strchars = str.toCharArray(); for (int i = 0; i < strlen; i++) {
this.contents[start+i] = strchars[i]; } / for

But, doesn’t show knowledge of the library. E.g., String.charAt, which we could assume is constant time.

int strlen = str.length(); for (int i = 0; i < strlen; i++) { this.contents[start+i] = str.charAt(i); } / for

But there’s more to the library. System.arraycopy is intended to do quick copying of values.

System.arraycopy(str.toCharArray(), 0, this.contents, start, str.length());

The result is shorter (in terms of code we write), more likely to be correct, likely to be faster, and
potentially more readable.

2

An example of clarity

Problem: Insert an array into the middle of another array

First model: Three loops (or three calls to System.arraycopy)

// Deal with the stuff before the insertion point
// Deal with the stuff after the insertion point
// Deal with the inserted stuff

Second model: One loop, asking where we are at each point

for each position in the target array
 if we’re before the insertion point ...
 if we’re in the insertion section
 if we’re after the insertion section

In case it’s not clear, Sam would suggest the first.

Thinking about replace

It will be useful to figure out how big the new array should be before you copy stuff over.
Otherwise, you’ll expand again and again and again.

You can do that by finding out how many times the patterns appears in the string, and then doing
appropriate calculations.

// Copy the characters from the replacment // Shift the remaining stuff over (vague)

O(logn) algorithms

Although we say the constant multipler doesn’t really matter, it makes a HUGE difference for O(log_2(n))
algorithms.

Suppose we have an O(log_2(n)) algorithm that can process a million-item collection in a minute

How big a collection can an algorithm that is twice as fast process in a minute? Now, we can do
billion-element collection.

Copyright (c) 2013-14 Samuel A. Rebelsky.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

3

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC 207 2014S: Extra Session, Week 6
	Questions
	A bad example
	An example of clarity
	Thinking about replace
	O(logn) algorithms

