
Algorithms and OOD (CSC 207 2014S) : EBoards

CSC207.01 2014S, Class 54: Patterns of Design

Overview

Preliminaries.
Admin.
Questions.

Algorithm design.
ADT design.
Data-structure design.
Object design.
Code design.

Preliminaries

Admin

Distributed: Draft of take-home final
Earnest will go over sample problems from the in-class final at tonight’s mentor session.
I admit that my record keeping is not perfect. When you get grades from me and they are missing
something, let me know.
I have not been pushing most of the comments on code (which are normally on comments).

Upcoming Work

Continue to work on the exam.
Decide which exam you are taking (and when, for the in-class exam)
No more readings.
Today’s writeup: No writeup.

Extra Credit

College budget talk, today at noon or 7:30 p.m.
CS table Friday: Casual conversation.
Conference track meet Friday and Saturday. NBB runs at 4:05 and 5:10.
Listen to EB’s radio show on KDIC Friday at 5pm.
Listen to DNP guest star on some radio show Friday at 11pm.

1

Questions (Exam and Otherwise)

Is there a way to compare two trees?

I have not written a comparator for trees. You could write one. It will probably look something like
the following.

 public static boolean equals(BSTNode one, BSTNode two)
 {
 // Base case one: Both are the same node. Obviously the same tree.
 // Also covers the both are null case.
 if (one == two)
 return true;

 // Base case two: One, but not the other is null. Different trees.
 else if ((one == null) || (two == null))
 return false;

 // Recursive case: Both are nodes
 else return (one.key.equals(two.key)) &&
 (one.value.equals(two.value)) &&
 (equals(one.smaller, two.smaller)) &&
 (equals(one.larger, two.larger));
 } // equals(BSTNode, BSTNode)

Should we copy values or move nodes in rearranging trees?

Move nodes. It ends up working better in the long run, at least if I trust my experience and intuition.

Algorithm design
When given an algorithm design problem, how do you get started?

Get donuts?
Ask a professor or other professional.
Draw a picture of the problem.
Make sure that we understand the problem well.

Specify input, types, preconditions
Specify output, types, postconditions, goals
Write unit tests

Brainstorm about how to get from preconditions to postconditions
Identify data structures that may be useful.
Fiddle - Try to solve a sample problem by hand.
See if it’s been solved already - there’s no reason to rebuild something that others have already built,
unless you think you can do it better.

How Sam tends to approach algorithm design.

2

Solve a few examlpes by hand to develop intuition.
Formalize (informally) - Demonstrate understanding of problem, perhaps check with "client"
Consider whether I’ve solved similar problems before, and see if I can adapt those algorithms.

May help to classify the problem
Optimization: Best/smallest/etc.
A collection of operations
Arrangement of data
Searching
...

Consider some common algorithm design strategies
Divide and conquer
Dynamic programming / caching
Greed, particularly for optimization
Learn more in 301

Sketch
Attempt
Refine
Think about edge cases
Run tests

Much later

If we know that we’re writing a loop, write/sketch a loop invariant

ADT design
Sam’s basic questions on ADT design:

What is the overall purpose or philosophy of the ADT?
What are the use cases that will guide your design?
What methods will support those use cases.

Data-structure design
When given a data-structure design problem, how do you get started?

See above.
Main approaches to organizing data

Array (contiguous indexed memory)
One-dimensional linked structure
Two-dimensional linked structurs (e.g., trees)
Hybrid

3

What are Sam’s basic questions on data structure design?

Object design
"Design Patterns"

Ways of thinking about common problems.

A language for expressiong common solutions.

I expect you to know (and have seen)

Factory
Model/View/Controller
Adapter
Singleton
Iterator
Observer
Decorator

Code design
Copyright (c) 2013-14 Samuel A. Rebelsky.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

4

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2014S, Class 54: Patterns of Design
	Preliminaries
	Admin
	Upcoming Work
	Extra Credit
	Questions (Exam and Otherwise)

	Algorithm design
	ADT design
	Data-structure design
	Object design
	Code design

