Algorithms and OOD (CSC 207 2014S) : EBoards

CSC207.01 2014S, Class 54. Patterns of Design

Overview

® Preliminaries.

O Admin.

O Questions.
Algorithm design.
ADT design.
Data-structure design.
Object design.

Code design.

Preliminaries

Admin

® Distributed: Draft of take-home final
e Earnest will go over sample problems from the in-class final at tonight’s mentor session.

® | admit that my record keeping is not perfect. When you get grades from me and they are missing
something, let me know.

® | have not been pushing most of the comments on code (which are normally on comments).

Upcoming Work

e Continue to work on the exam.

® Decide which exam you are taking (and when, for the in-class exam)
® No more readings.

® Today'swriteup: No writeup.

Extra Credit

College budget talk, today at noon or 7:30 p.m.

CStable Friday: Casual conversation.

Conference track meet Friday and Saturday. NBB runs at 4:05 and 5:10.
Listen to EB’s radio show on KDIC Friday at 5pm.

Listen to DNP guest star on some radio show Friday at 11pm.



Questions (Exam and Otherwise)
Isthere a way to compare two trees?

| have not written a comparator for trees. Y ou could write one. It will probably look something like
the following.

public static bool ean equal s(BSTNode one, BSTNode two)
{

/| Base case one: Both are the sane node. Cbviously the same tree
/'l Also covers the both are null case
if (one == two)

return true;

// Base case two: One, but not the other is null. Different trees
else if ((one == null) || (two == null))
return fal se;

/'l Recursive case: Both are nodes
el se return (one. key. equal s(two. key)) &&
(one. val ue. equal s(two. val ue)) &&
(equal s(one.snaller, two.smaller)) &&
(equal s(one. |l arger, two.larger));
} I/ equal s(BSTNode, BSTNode)

Should we copy values or move nodes in rearranging trees?

Move hodes. It ends up working better in the long run, at least if | trust my experience and intuition.

Algorithm design
When given an algorithm design problem, how do you get started?

Get donuts?
Ask aprofessor or other professional.
Draw a picture of the problem.
Make sure that we understand the problem well.
O Specify input, types, preconditions
O Specify output, types, postconditions, goals
O Write unit tests
Brainstorm about how to get from preconditions to postconditions
Identify data structures that may be useful.
Fiddle - Try to solve a sample problem by hand.
Seeif it's been solved already - there’s no reason to rebuild something that others have already built,
unless you think you can do it better.

How Sam tends to approach algorithm design.



® Solve afew examlpes by hand to develop intuition.
Formalize (informally) - Demonstrate understanding of problem, perhaps check with "client"
® Consider whether I've solved similar problems before, and see if | can adapt those algorithms.
O May help to classify the problem
® Optimization: Best/smallest/etc.
® A collection of operations
® Arrangement of data
® Searching
° ..
® Consider some common algorithm design strategies
O Divide and conquer
O Dynamic programming / caching
O Greed, particularly for optimization
O Learn morein 301
Sketch
Attempt
Refine
Think about edge cases
Run tests

Much later

e |f weknow that we're writing aloop, write/sketch aloop invariant

ADT design
Sam'’ s basic questionson ADT design:

® \What isthe overall purpose or philosophy of the ADT?
® \What are the use cases that will guide your design?
e \What methods will support those use cases.

Data-structure design
When given adata-structure design problem, how do you get started?

® Seeabove.
® Main approachesto organizing data
O Array (contiguous indexed memory)
O One-dimensional linked structure
O Two-dimensional linked structurs (e.g., trees)
O Hybrid



What are Sam’ s basic questions on data structure design?

Object design

"Design Patterns"

Ways of thinking about common problems.

A language for expressiong common solutions.
| expect you to know (and have seen)

Factory
Mode/View/Controller
Adapter

Singleton

|terator

Observer

Decorator

Codedesign

Copyright (c) 2013-14 Samuel A. Rebelsky.

Thiswork is licensed under a|Creative Commons Attribution 3.0 Unported Licensd To view acopy of this

license, visithttp://creati vecommpns. org/ | i censes/ by/ 3. 0/]|or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.



http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2014S, Class 54: Patterns of Design
	Preliminaries
	Admin
	Upcoming Work
	Extra Credit
	Questions (Exam and Otherwise)

	Algorithm design
	ADT design
	Data-structure design
	Object design
	Code design


