
Algorithms and OOD (CSC 207 2014S) : EBoards

CSC207.01 2014S, Class 48: Dynamic Programming

Overview

Preliminaries.
Admin.
Questions.

The stamps problem.
Fibonacci.
Generalizing the idea.
The stamps problem, revisited.
Edit distance in strings. [Maybe]

Preliminaries

Admin

Don’t forget to turn in tutor/mentor/grader forms.
What food/drink do you want on Monday?

EW wants grapefruit juice
Others want chocolate milk
Fruit - Blueberries, Other berries, Bananas, Grapes

Upcoming Work

Reading for Monday: No reading. Prepare your talks.
Get me slides by 8pm Sunday night.

Today’s writeup: No writeup.
Part 2 of the project is due tonight at 10:30 p.m. (No, I’m not updating the Web page.)

Please be careful on formatting!
Please be careful on citations!

Extra Credit

CS Table today: Heartbleed.
Iowater project April 26 - Tag drains. Mail iowater@grinnell.edu for details.
Field day!
ISO Cultural Show tonight at 7pm
Titular Head Saturday night

1

Questions

Essays can be a few paragraphs. (One on feature, one on license.)
Documentation should be longer.

The stamps problem
A famous optimization problem
Set of values: s1, s2, s3, ... s_n (1, 2, 7, 12, 25)

You may assume that it’s sorted.
Target value: 68
Question: Find the combination of values that makes the target value that has the fewest total values
Example: Goal is 36 12, 12, 12 - three values 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 - thirty six ones 25, 7, 2, 2 - four values
Note: Sometimes the problem is not solvable.

Question: How do you solve this?

Greed is Good

Take as many of the largest value as possible
Then take as many of the next largest value as possible
...
Whoops ... Doesn’t work 36 : 12, 12, 12, not 25, 7, 2, 2

EM

Make every combination of values that create the target
Figure out which requires the fewest items
Slow, but probably correct.
Question: How do you make all of the combinations? For s = s0 to sn compute the smallest set for
(t-s) add s
Can we make this faster? Yes. Memoize.

UM

For l = 1 to ...
Make every combination of length l
If any of them equals the target, you’re done

Note: If there are k values required for a number, this is approximately O(n^k).

2

Fibonacci
fib(0) = 0
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2)

Why do we care? (other than that it’s cooly recursive)

Breeding patterns of rabbits
Growth rate of snails
Gives golden ratio

Direct translation

 public static BigInteger fib(int n)
 {
 if (n < 2)
 return new BigInteger(n);
 else
 return fib(n-1).add(fib(n-2));
 } // fib(int)

This is insanely slow.

Solution: Keep track of the past values

BigInteger FIB[]; // Cached results. If a value in here is non-null
 // it’s the nth Fibonacci number
public static BigInteger fib(int n)
{
 if (FIB == null)
 {
 FIB = new BigInteger[n+1];
 FIB[0] = 0;
 FIB[1] = 1;
 } // if we don’t have the array
 if (FIB[n] != null)
 return FIB[n];
 else
 {
 FIB[n] = fib(n-1).add(fib(n-2));
 return FIB[n];
 } // else

Caching has turned an exponential algortihm into a linear algorithm

We could also use the closed form of the Fibonacci numbers.

But that requires us to know math.

3

We could also build the array iteratively

public static BigInteger fib(int n)
{
 BigInteger FIB[n+1];
 FIB[0] = 0;
 FIB[1] = 1;
 for (int i = 2; i <= n; i++)
 FIB[i] = FIB[i-1].add(FIB[i-2]);
 return FIB[n];
} // fib(int)

Sam thinks of the key ideas of dynamic programming as: "Cache in an array, and build from bottom
up."

The stamps problem, revisited
Cache and build from bottom up

Reminder:

n: The number of original values
t: The target value

Running time: O(t*n) - Essentially linear.

Edit distance in strings
Nope, we didn’t get this far.

Copyright (c) 2013-14 Samuel A. Rebelsky.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

4

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2014S, Class 48: Dynamic Programming
	Preliminaries
	Admin
	Upcoming Work
	Extra Credit
	Questions

	The stamps problem
	Fibonacci
	The stamps problem, revisited
	Edit distance in strings

