
Algorithms and OOD (CSC 207 2014S) : EBoards 

CSC207.01 2014S, Class 45: Heaps

Overview

Preliminaries. 
Admin. 
Questions. 
Looking at phase 1.

Priority queues, revisited. 
Recent implementation techniques. 
Heaps. 
Adding elements to heaps. 
Removing elements from heaps. 
Asymptotic analysis. 
Storing heaps in arrays. 
Heap sort.

Preliminaries

Upcoming Work

Reading for Tuesday: No reading. 
Today’s writeup: No writeup. 
Part 2 of the project is due 10:30 p.m. Friday.

Admin

Welcome to our prospective 
I’ve reviewed about half of your projects before running out of time. 
We’ll talk about some common (and not so common) issues for about ten minutes. 
Given the problems with MathLAN, I’m not sure what to do about the due date of the project. What
do you think? 

Those of you trying to fix the problem using Wireshark or whatever probably need to stop.
I need two graders for next semester who can do detailed comments. Yes, I will provide training.

Extra Credit

Math extra Thursday: Sphere Packing. 
CS Table Friday: Heartbleed. Readings TBD. 
Iowater project April 26 - Tag drains. Mail iowater@grinnell.edu for details. 
Any one pride week activity.

1



Questions on the Project.

Short discussion of Phase 1.

Priority queues, revisited
ADT

A queue that’s prioritized. 
A normal queue is first in first out. 
A priority queue has a priority that indicates which things are more important 
We could store numbers and the largest/smallest has highest priority. 
We could associate a number with each value we store, largest (or smallest) has highest priority. 
Use a comparator!

How might we implement one?

Linked list in which values are in order of priority. 
O(1) to get 
O(n) to put

Can we do better?

Use a skip list. O(logn) to put, O(logn) to get.

Recent implementation techniques
Hash tables - Using keys and hashing: convert to a number 

Expandable
Binary search trees - Divide and conquer applied to data structures 
We could hope that put is O(logn) if it’s balanced 
We don’t know how to keep them balanced.

Heaps
An approach for building priority queues. 
Binary trees, nearly complete 

Complete at every level (except maybe the last)
Also with the heap property: The root of the tree has the highest priority (and that holds for all the
subtrees) 
Note: Peeking at the highest-priority element is O(1) 
How do we build and maintain a heap structure

2



Adding elements to heaps
When I add something, I have to decide where it goes and then I have two properties to achieve. 

Nearly complete 
Heap property

To maintain near completeness, we need to add something at the end of the last row (or, if that row is
complete, at the beginning of the next row) 
And then "swap up" - if larger than thing above, swap the values. 

No need to look at subtrees - We know that it’s larger than the other subtree.
Question: How do we find the end of the last row? 

Forthcoming.
How fast is add? path to the root: O(logn)

Removing elements from heaps
Remove the root 
Put the last element at the last level at the root. Nearly complete! 
Repeatedly swap with the larger of the two children (provided it’s smaller than the larger of the two
children). 
Yay! O(logn) 

Asymptotic analysis

Storing heaps in arrays

Heap sort
Copyright (c) 2013-14 Samuel A. Rebelsky. 

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

3

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2014S, Class 45: Heaps
	Preliminaries
	Upcoming Work
	Admin
	Extra Credit
	Questions on the Project.
	Short discussion of Phase 1.

	Priority queues, revisited
	Recent implementation techniques
	Heaps
	Adding elements to heaps
	Removing elements from heaps
	Asymptotic analysis
	Storing heaps in arrays
	Heap sort


