
Algorithms and OOD (CSC 207 2014S) : EBoards

CSC207.01 2014S, Class 42: Implementing Dictionaries
with Hash Tables

Overview

Preliminaries.
Upcoming work.
Admin.
Questions.

An introduction to hash tables.
Hash functions.
An exercise.
Handling collisions.
Hashing in Java.
Handling removal.

Preliminaries
The answer is 42. (The question is "What class is it?")

Upcoming Work

Reading for tomorrow: Hash Tables
No writeup today. (No lab today.)
Part 1 of the project is due Wednesday night.

I’ll take questions after the introductory stuff.

Admin

Happy spring!
Review session tonight - JSON.
I planned today well. No need to use MathLAN.

Extra Credit

Convo Wednesday: Philip Deloria, Professor of History and Native American Studies, University of
Michigan.
CS extra Thursday: Charlie Eddy on Kinect.
CS Pub Night Thursday.
CS table Friday: Big Data (Stone leads).
Get and wear one of the 1 in 4 shirts.

1

Iowater project April 19 - Tag drains. Mail iowater@grinnell.edu for details.
http://www.strikingly.com/pioneerweekend

Questions

Do I have to worry about whitespace characters, such as tabs and newline?

Nope.

Is the empty string the empty string?

Yes.

Can we crash on invalid strings, such as "\"?

Yes.

Do we have to assume that JSON represents an array or string?

I’d prefer that you assume that JSON can represent any type. But if you can find it in the ECMA
standard, you can assume it represents only an array or string.

An introduction to hash tables
One of the most popular implementations of dictionaries.
Observation: Arrays are fast - O(1)
Conceptually, dictionaries should be just as fast.
Strategy: Use arrays, write function that turns keys into indices in the array.

If we’re lucky, no two keys will have the same index.
We call this function a "hash" function.

To put an object, put the key value pair at index hash(key) % table-size

this.values[hash(key) % this.values.size] = new KeyValuePair(key,value);

To get an object, get the key/value pair at index hash(key) % table-size

return this.values[hash(key) % this.values.size].value;

Note: We typically put a lot of blank space in the table in order to achieve efficiency.

Hash function
Map keys to values
Given the same key, should give the same value
Given different keys, should give different values
Impossible to achieve the second in general: There are generally more values of any type than there

2

http://www.strikingly.com/pioneerweekend

are Java integers.
Design hash function so that different keys are unlikely to have the same value.
The hard parts of hash tables

Writing good hash functions
Dealing with duplicate hash values

An exercise
Letter values

 A: 1 F: 6 K: 11 P: 16 U: 21 Z: 26
 B: 2 G: 7 L: 12 Q: 17 V: 22
 C: 3 H: 8 M: 13 R: 18 W: 23
 D: 4 I: 9 N: 14 S: 19 X: 24
 E: 5 J: 10 O: 15 T: 20 Y: 25

Hash table

 0: 10: 20:
 1: 11: 21:
 2: erin (32) 12: vasi (42) 22:
 3: sam (33) 13: 23:
 4: shen (32) 14: 24:
 5: 15: 25: helen (25)
 6: 16: 26: graeme (26)
 7: 17: nora (37) 27:
 8: 18: alex (18) 28:
 9: 19: 29:

 Additional: shen (32), fengyuan (25), madeleine (18)

sam: 19 + 1 + 13 = 33, goes in cell 3

Handling collisions
Strategy 1: Instead of putting single key/value pairs in each cell, make each cell a bucket that holds
multiple key/value pairs. Chaining. Most frequently with association lists.
Strategy 2: rehash - Find another location for the value.

Use another function
Look in the next cell = hash(key) + 1
What if that’s full. Look in the next cell.
The "add 1" is a form of what is called "linear probing"
Most linear probing uses some other offset, which should be relatively prime to the size of the
table.
There’s also quadratic probing n -> n + 1 -> n + 1 + 4 -> n + 1 + 4 + 9 -> n + 1 + 4 + 9 + 16
Some people use a computed offset

3

Question: How do you implement get when you use the "rehash" approach?

Hash the key and look at the given spot.
Keys match. Done.
Keys don’t match: Follow the rehashing steps until you find a matching key or find an empty
space.

Question: Is this still constant?

It’s expected constant.
We can rebuild the table if the ratio of values to size gets too large, or if we get a chain that’s too
large or ...
If we expand the table, we typically need to move everything into a different place in the new table
(and have to compute the table).

Hashing in Java
java.util.Hastable
java.util.HashMap
Also a language decision: Hash functions are expected for every class.

That is, implement int hashCode()

Sample hash function

public class Rational
{
 BigInteger numerator;
 BitInteger denominator;

 public int hashCode()
 {
 return numerator.hashCode() * 2 + denominator.hashCode() * 3;
 } // hashCode()

Handling removal
How do we get rid of sam?

 0: 10: 20:
 1: 11: 21:
 2: erin (32) 12: vasi (42) 22:
 3: shen (32) 13: 23:
 4: leon (32) 14: 24:
 5: 15: 25: helen (25)
 6: 16: 26: graeme (26)
 7: 17: 27: helena (25)
 8: 18: alex (18) 28:
 9: 19: 29:

4

Just clearing the cell doesn’t work.
Mark it as deleted, but don’t actually delete it.

Does that change how you do put? If you hit one of these "deleted" cells, use the cell.
Probe further and move backwards. And then recurse

And you have to do this carefully. For example, deleting helen does not mean that we have to
move graeme (but we do have to move helena)

Copyright (c) 2013-14 Samuel A. Rebelsky.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

5

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2014S, Class 42: Implementing Dictionaries with Hash Tables
	Preliminaries
	Upcoming Work
	Admin
	Extra Credit
	Questions

	An introduction to hash tables
	Hash function
	An exercise
	Handling collisions
	Hashing in Java
	Handling removal

