Algorithms and OOD (CSC 207 2014S) : EBoards

CSC207.01 2014S, Class 38: Implementing Dictionaries

Overview

® Preliminaries.

O Upcoming work.

o Admin.

O Extracredit.

O Questions.
A dictionary ADT, continued.
Review: Thinking about data structures.
Association lists.
Techniques for improving the implementation.
Binary search trees.

Preliminaries

Upcoming Work

® No writeup today (particularly since there’ s no lab today)!
e HW 6 remains due Wednesday night.
® Exam 2 makeup due Thursday night (printed due in class Friday).

Admin

® [Exams returned.
® | hope that you understand that yesterday’s rant was intended as a positive action.

Extra Credit

|http://www.strikingly.com/pioneerweekend

Review session tonight, 7 pm in 3821.

Any one Spring into Humanities (or isit vice versa) talk.

CSextra Thursday: Software to enhance wellness: The DavisJan team.
CStable Friday: TBD.

CS extranext Monday: Walker and Liberto on bluetooth.

Get and wear one of the "1 in 4" shirts next week.

Uofl HackaThon this weekend.

http://www.strikingly.com/pioneerweekend

Questions

Talk to us above model/view/controller, particularly for this.

See the whiteboard for details.

A dictionary ADT, continued

A dlight change, to follow common terminol ogy
® key, rather than "index"
Note: keys can be any type, rather than just string.

® Sam suggests that it might be useful to have dictionaries in which the keys are integers.
O This seems odd, since arrays also map integersto values
O We' ve made our dictionaries expand automatically, so that’s nice.
® But vectors expand automatically, too.
O If ourindicesarenot O ... n, wetypically waste alot of space if we use vectors or arrays.

The interface

/**

* A dictionary of values of type V keyed by val ues of type K
*/

public interface Dictionary<K, V>

{

/**
* Confirmthat a key is valid.
*
/
publ i c bool ean contai nsKey(K key);

/**

* Change the entry for a particul ar key.
*
* @re key is a valid key for the dictionary
* @ost get(key) == val ue
*/
public void set(K key, V value)
t hrows NoSuchKeyExcepti on

/**

* Add the entry for a particular key.

*
* @re key is not a valid key for the dictionary
* @ost get(key) == value
*
/
public void add(K key, V value)
t hrows Excepti on;

/**

* CGet the entry for a particular key.

*

* @hrows NoSuchEl enent Excepti on
* If the key is not a valid key for the dictionary.
*/
public V get (K key)
t hrows NoSuchEl enent Excepti on;

No el enents of keys are already valid.

/-k*

* Add a bunch of keys and val ues.
*

* @re

* keys.l ength == val ues. | ength
* @re

* No el enent of keys is null.

* @re

* No two el enments of keys are equal.
* @re

*

*

~

public void addAl I (K[] keys, V[] val ues)
t hrows SonmeRandonExcepti on;

/-k*

* Renpbve a val ue based on its key.
*/

public void renove(K key);

/-k*

* Renmpve everyt hi ng.
*/

public void clear();

/-k*

* Renove all the entries with a given val ue.
*/

public void renmoveAl | (V val);

/-k*

* CGet all of the keys in the dictionary.
*/

public Iterator<K> keys();

/**

* CGet all of the values in the dictionary.
*/
public lterator<V> val ues();

/-k*

* Get all of the key/value pairs in the dictionary.
*/

public Iterator<Pair<K, V>> pairs();

/-k*

* Update all of the val ues.

*/
public void map(Bi naryFunction<kK, V, V> update);

} /1 interface Dictionary<K, V>
Some design questions, major and minor

® \What else are we missing?
O Nothing, in the maximalist approach
® What istherelationship between set and add?
O One expects the key aready there, the other expects the key not to be there.
O Isit worth having both?
® Yes. Makesit clearer to someone who is using it that one simply changes the entry while
another likely expands the dictionary.
® Yes. Helpscatch errors.
® No. They are similar enough that it’'s pointless to have both.
® No. Complicates the semantics of addAll.
Think about arrays of keys
What doessort do?
Should the function that returns an iterator for values be called val ues ori t er at or ?
Should we haver enove in the structure or in the iterator (or both)?

Deprecated

/**

* Create an array of keys.
*

/
public K[] keyArray();

/**

* Create an array of val ues.
*/
public V[] val uesArray();

Review: Thinking about data structures
Association lists
Techniquesfor improving the implementation

Binary search trees
Copyright (c) 2013-14 Samuel A. Rebelsky.

Thiswork is licensed under a|Creative Commons Attribution 3.0 Unported Licensd. To view acopy of this
license, visit|http://creati veconmons. org/ i censes/ by/ 3. 0/]or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2014S, Class 38: Implementing Dictionaries
	Preliminaries
	Upcoming Work
	Admin
	Extra Credit
	Questions

	A dictionary ADT, continued
	Review: Thinking about data structures
	Association lists
	Techniques for improving the implementation
	Binary search trees

