
Algorithms and OOD (CSC 207 2014S) : EBoards

CSC207.01 2014S, Class 38: Implementing Dictionaries

Overview

Preliminaries.
Upcoming work.
Admin.
Extra credit.
Questions.

A dictionary ADT, continued.
Review: Thinking about data structures.
Association lists.
Techniques for improving the implementation.
Binary search trees.

Preliminaries

Upcoming Work

No writeup today (particularly since there’s no lab today)!
HW 6 remains due Wednesday night.
Exam 2 makeup due Thursday night (printed due in class Friday).

Admin

Exams returned.
I hope that you understand that yesterday’s rant was intended as a positive action.

Extra Credit

http://www.strikingly.com/pioneerweekend
Review session tonight, 7 pm in 3821.
Any one Spring into Humanities (or is it vice versa) talk.
CS extra Thursday: Software to enhance wellness: The DavisJan team.
CS table Friday: TBD.
CS extra next Monday: Walker and Liberto on bluetooth.
Get and wear one of the "1 in 4" shirts next week.
UofI HackaThon this weekend.

1

http://www.strikingly.com/pioneerweekend

Questions

Talk to us above model/view/controller, particularly for this.

See the whiteboard for details.

A dictionary ADT, continued
A slight change, to follow common terminology

key, rather than "index"

Note: keys can be any type, rather than just string.

Sam suggests that it might be useful to have dictionaries in which the keys are integers.
This seems odd, since arrays also map integers to values
We’ve made our dictionaries expand automatically, so that’s nice.

But vectors expand automatically, too.
If our indices are not 0 ... n, we typically waste a lot of space if we use vectors or arrays.

The interface

/**
 * A dictionary of values of type V keyed by values of type K.
 */
public interface Dictionary<K,V>
{
 /**
 * Confirm that a key is valid.
 */
 public boolean containsKey(K key);

 /**
 * Change the entry for a particular key.
 *
 * @pre key is a valid key for the dictionary
 * @post get(key) == value
 */
 public void set(K key, V value)
 throws NoSuchKeyException;

 /**
 * Add the entry for a particular key.
 *
 * @pre key is not a valid key for the dictionary
 * @post get(key) == value
 */
 public void add(K key, V value)
 throws Exception;

 /**
 * Get the entry for a particular key.

2

 *
 * @throws NoSuchElementException
 * If the key is not a valid key for the dictionary.
 */
 public V get(K key)
 throws NoSuchElementException;

 /**
 * Add a bunch of keys and values.
 *
 * @pre
 * keys.length == values.length
 * @pre
 * No element of keys is null.
 * @pre
 * No two elements of keys are equal.
 * @pre
 * No elements of keys are already valid.
 */
 public void addAll(K[] keys, V[] values)
 throws SomeRandomException;

 /**
 * Remove a value based on its key.
 */
 public void remove(K key);

 /**
 * Remove everything.
 */
 public void clear();

 /**
 * Remove all the entries with a given value.
 */
 public void removeAll(V val);

 /**
 * Get all of the keys in the dictionary.
 */
 public Iterator<K> keys();

 /**
 * Get all of the values in the dictionary.
 */
 public Iterator<V> values();

 /**
 * Get all of the key/value pairs in the dictionary.
 */
 public Iterator<Pair<K,V>> pairs();

 /**
 * Update all of the values.

3

 */
 public void map(BinaryFunction<K,V,V> update);

} // interface Dictionary<K,V>

Some design questions, major and minor

What else are we missing?
Nothing, in the maximalist approach

What is the relationship between set and add?
One expects the key already there, the other expects the key not to be there.
Is it worth having both?

Yes. Makes it clearer to someone who is using it that one simply changes the entry while
another likely expands the dictionary.
Yes. Helps catch errors.
No. They are similar enough that it’s pointless to have both.
No. Complicates the semantics of addAll.

Think about arrays of keys
What does sort do?
Should the function that returns an iterator for values be called values or iterator?
Should we have remove in the structure or in the iterator (or both)?

Deprecated

 /**
 * Create an array of keys.
 */
 public K[] keyArray();

 /**
 * Create an array of values.
 */
 public V[] valuesArray();

Review: Thinking about data structures

Association lists

Techniques for improving the implementation

Binary search trees
Copyright (c) 2013-14 Samuel A. Rebelsky.

4

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

5

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2014S, Class 38: Implementing Dictionaries
	Preliminaries
	Upcoming Work
	Admin
	Extra Credit
	Questions

	A dictionary ADT, continued
	Review: Thinking about data structures
	Association lists
	Techniques for improving the implementation
	Binary search trees

