
Algorithms and OOD (CSC 207 2014S) : EBoards 

CSC207.01 2014S, Class 32: Pause for Breath

Overview

Preliminaries. 
Admin. 
Questions.

More notes on exam 2. 
Remaining DLL topics. 
Generics, revisited. 
Inner classes, revisited.

Preliminaries

Admin

No writeup for today. 
Happy Pi day! 
Exam 2 code is ready. Unit tests for problems 3 and 4 forthcoming. 

I’ll be writing the unit tests and solving all of the problems as soon as I’m healthy. 
Due date moved to class time Friday after break.

Yesterday’s extra has an extended riff on the various inner classes. 
Extra credit: 

CS table today: Is Codecademy worth it and other casual conversations.

More notes on exam 2
Problem 3: remove() is complicated in singly linked lists if the iterator is on the node that we want to 
remove

Traditionally, iterators in linked lists refer to the node immediately before the node containing the
value that we return when the client calls next. 
In almost every case, it’s on the thing that next just returned. 
The iterator needs to back up to the previous node, but we can’t do that in constant time. 
So, what alternatives do we have? 

NO Change the meaning of remove: Remove the next element 
remove is specified in java.lang.Iterator. Changing the meaning will make things rocky. 
removing things you haven’t seen yet is weird

A Keep two pointers! One to the previous element and one to the current element. 
Needs care in how we implement next

B Keep the cursor two back, rather than one back 

1



Seems to be hard to maintain that invariant
C Keep the cursor one back and add a boolean flag to indicate whether or not we’d returned the
next value 
D Copy the data, rather than eliminating the node 

Dangerous if other folks refer to the node
What should we do for skip lists? 

One option: Keep track of the previous at every level

Remaining DLL topics
Remember: DLLs exist because remove is such a pain for singly linked lists. 
Three (or more) methods to think about 

add 
remove 
set 
previous 
...

Design decision: The iterator points to the node before the node that contains the value that next 
returns

Implement add

create a new node, n 
fun with pointers 

n.prev = this.current; 
n.next = this.current.next; 
this.current.next.prev = n 
this.current.next = n

The last two lines could be written 
n.prev.next = n 
n.next.prev = n 
And those can be in either order

move iterator forward; semantics of add are "add before the iterator" 
this.current = n

Implement remove

splice out the node 
current.prev.next = current.next 
current.next.prev = current.prev

move the iterator backwards 
current = current.prev;

If possible, set the next/prev of the now deleted node to null for safety

2



Generics, revisited

Inner classes, revisited
Copyright (c) 2013-14 Samuel A. Rebelsky. 

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

3

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2014S, Class 32: Pause for Breath
	Preliminaries
	Admin

	More notes on exam 2
	Remaining DLL topics
	Generics, revisited
	Inner classes, revisited


