Algorithms and OOD (CSC 207 2014S) : EBoards

CSC207.01 2014S, Class 32: Pausefor Breath

Overview

® Preliminaries.

O Admin.

O Questions.
More notes on exam 2.
Remaining DLL topics.
Generics, revisited.
Inner classes, revisited.

Preliminaries

Admin

No writeup for today.

Happy Pi day!

Exam 2 code isready. Unit tests for problems 3 and 4 forthcoming.
O I'll be writing the unit tests and solving all of the problems as soon as I’ m healthy.
O Due date moved to class time Friday after break.

Y esterday’ s extra has an extended riff on the variousinner classes.

Extra credit:
O CStabletoday: |s Codecademy worth it and other casual conversations.

M or e notes on exam 2

Problem 3: remove() is complicated in singly linked lists if the iterator is on the node that we want to
remove

e Traditionally, iterators in linked lists refer to the node immediately before the node containing the
value that we return when the client calls next.

® |namost every case, it’s on the thing that next just returned.
The iterator needs to back up to the previous node, but we can’t do that in constant time.
® So, what alternatives do we have?
O NO Change the meaning of remove: Remove the next element
® remove is specified in javalang.lterator. Changing the meaning will make things rocky.
® removing things you haven't seen yet isweird
O A Keep two pointers! One to the previous element and one to the current element.
® Needs care in how we implement next
O B Keep the cursor two back, rather than one back



® Seemsto be hard to maintain that invariant
O C Keep the cursor one back and add a boolean flag to indicate whether or not we' d returned the
next value
O D Copy the data, rather than eliminating the node
® Dangerousif other folks refer to the node
® What should we do for skip lists?
O One option: Keep track of the previous at every level

Remaining DL L topics

® Remember: DLLs exist because removeissuch apain for singly linked lists.
® Three (or more) methods to think about
O add
O remove
O st
O previous
o ..
® Design decision: The iterator points to the node before the node that contains the value that next
returns

Implement add

® create anew node, n
e fun with pointers
O n.prev = this.current;
O n.next = this.current.next;
O this.current.next.prev = n
O this.current.next =n
® Thelast two lines could be written
O n.prev.next=n
O n.next.prev=n
O And those can bein either order
® moveiterator forward; semantics of add are "add before the iterator”
O this.current=n

Implement remove

® gplice out the node
O current.prev.next = current.next
O current.next.prev = current.prev
® movetheiterator backwards
O current = current.prev;
e |f possible, set the next/prev of the now deleted node to null for safety



Generics, revisited

Inner classes, revisited

Copyright (c) 2013-14 Samuel A. Rebelsky.

Thiswork is licensed under a|Creative Commons Attribution 3.0 Unported Licensd To view acopy of this

license, visithttp://creati vecommpns. org/ | i censes/ by/ 3. 0/]or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.



http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2014S, Class 32: Pause for Breath
	Preliminaries
	Admin

	More notes on exam 2
	Remaining DLL topics
	Generics, revisited
	Inner classes, revisited


