
Algorithms and OOD (CSC 207 2014S) : EBoards

CSC207.01 2014S, Class 28: Quicksort

Overview

Preliminaries.
Upcoming work.
Questions.

A quick introduction to Quicksort.
Key ideas from Quicksort.

Preliminaries

Upcoming Work

Today’s lab writeup: Exercise 4 (implement Partition)
Reading for Monday: A List ADT and Array-based lists (forthcoming)
NO HOMEWORK THIS WEEK!

Admin

Have fun with Earnest!
EB is the note taker today.

Aspects of QuickSort
O(n log(n)) is best and average case
O(n squared) is the worst case scenario (if the pivot is the first or last element each time)
Still, generally faster than other O(n log(n)) algorithms

So what is the pivot?

It’s the point from which we divide and conquer

Is QuickSort stable?

No, and the ways to make it stable are pretty darn inefficient. [Well, more complicated than
inefficient.]

More importantly, it’s memory efficient.

1

We don’t have to make another array when sorting an array!
This means it sorts in-place!

Practice:

Let’s organize this array:

[slots are numbered 0 â 11]
lb = 0; ub = 12
a|l|p|h|a|b|e|t|i|c|a|l [we pick b as our pivot]

lb = 1; ub = 12
b|l|p|h|a|a|e|t|i|c|a|l

If an element is > b we lower ub, if element is < b we raise lb

We keep sorting, get to

a|a|a|b|h|e|t|i|c|p|l|l
ub == lb == 3

So we recurse over the first four elements and the rest of the list, and the list is eventually sorted!

Copyright (c) 2013-14 Samuel A. Rebelsky.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

2

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2014S, Class 28: Quicksort
	Preliminaries
	Upcoming Work
	Admin

	Aspects of QuickSort

