
Algorithms and OOD (CSC 207 2014S) : EBoards

CSC207.01 2014S, Class 27: Merge Sort

Overview

Preliminaries.
Admin.
Questions.

Lower bounds on sorting.
Divide and conquer algorithms.
An introduction to merge sort.
Analyzing merge sort.

Preliminaries

Upcoming work

Homework 5 due tonight!
You can send email during class and I’ll respond as quickly as I can.
That should give you an opoportunity to get some cyclic feedback.

Today’s lab writeup: Invariants for merge (part of Exercise 2a)
You can draw pictures on the computer
You can draw pictures on paper
You can write things a bit more mathematically

Reading for Friday: Quicksort

Admin

Continue to have fun with Earnest!
KS is the note taker today.
Earnest is happy to answer questions about Skip Lists, whether he knows it or not.

I’ll also try to be on email, and you can collaborate on sending me messages.
Extra credit:

Convocation, noon, today.
Presentations on Grinnell institutional image, noon on Thursday or Friday.

Other things you should do (warning! tickets go quickly)
Neverland players.
Balancing acts.

1

Questions on the homework

Sorting Algorithms
What makes a sorting algorithm stable?

If a is before b in the original array and a = b, then a is before b is the final array
Is selection sort stable?

It depends on indexOfSmallest
If we update small when order.compare(vals[i], vals[small]) < 0 then it is stable
If we update small when order.compare(vals[i], vals[small]) <= 0 then it is
NOT stable

Merge Sort
Take an array, divide it in half and keep dividing it in half until we have only pairs. Sort the pairs and
go back up the tree, merging the parts as you go.

To merge check which of the first two elements (of the parts you are merging) comes first until
one part has no remaining elements

Break down the array:

7 3 2 8 1 5 6 4

7 3 2 8 1 5 6 4

7 3 2 8 1 5 6 4

Build it back up:

3 7 2 8 1 5 4 6

2 3 7 8 1 4 5 6

1 2 3 4 5 6 7 8

[Sam notes that recursion doesn’t quite work this way. We do the left subarray completely before we do
the right subarray.]

Skip Lists
Functions that might be useful:

contains
add

Consider a singly linked list with a height cap
When you add an element, you need to make it point to what all the preceding pointers
were pointing to before it was inserted. Then make the preceding pointers point to your new
element.

2

remove
findPlace

Skip list element object (SkipLO)
Useful fields:

int level; [Sam notes that you can get this with next.length.]
String value;
SkipLO[] nexts;

Constructor:
Constructor (int l, String str) [Sam notes there’s an interesting design
decision: Does the list class deside on the level, or does the node constructor decide upon
the level?]

level = l; [If the node computes the level, this would be computeLevel()]
value = str;
nexts = new SkipLO[level];

Get fields
obj.level
obj.value
obj.next[l]

You need to keep track of what comes before the element you are interested in because they’re
singly linked and you can’t just go back.

Do the lab!
Copyright (c) 2013-14 Samuel A. Rebelsky.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

3

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2014S, Class 27: Merge Sort
	Preliminaries
	Upcoming work
	Admin
	Questions on the homework

	Sorting Algorithms
	Merge Sort
	Skip Lists
	Do the lab!

