
Algorithms and OOD (CSC 207 2014S) : EBoards

CSC207.01 2014S, Class 25: An Introduction to Sorting

Overview

Preliminaries.
Upcoming work.
Admin.
Questions on the homework.

The problem of sorting.
An object-oriented approach.
Testing our sorting algorithm.

Preliminaries

Upcoming Work

Homework 5 is due March 5.
Reading for tomorrow: Sorting basics.

Admin

Have fun with Earnest!
Labs for the week are written. Readings are coming soon.
I will take volunteers for note takers for Tuesday, Wednesday, and Friday. Extra credit for note
taking.

MH Tuesday
KS Wednesday
EB Friday

Extra credit:
Convocation, noon, Wednesday.
Presentations on Grinnell institutional image, noon on Thursday or Friday.
"We’re cool, we’re east campus, we just get B’s" hosts quizbowl at Lyle’s Tuesday night (we
think)

Things you should do
Balancing acts Friday, Saturday, Sunday
Neverland

Don’t forget mentor session tomorrow night

1

Questions on HW5

The problem of sorting
The goal of sorting: To put things in an order.
How does that relate to the goal of lists, in which you also put things in order?

Lists the client controls the order
For sorting, there’s a specific order that you want to use

For example you might sort an array
An array of strings in alphabetical order
An array of integers in ascending order
An array of integers in descending order

We might also sort
Lists
Two-dimensional arrays, perhaps along two dimensions

We probably wouldn’t want to sort
Stacks

When sorting arrays, how does the sorting algorithm know what order to put them in?
We need a way to compare each element

Let’s write a signature

public AN ARRAY sort(AN ARRAY, THE THING THAT DOES THE COMPARISONS)

Design issues:

Is this a static method, or is it a method of the array class (a mutator)?

Let’s make that look more like Java

public int[] sort(int[] vals, Comparator<Integer> order)

Using this model

sort(grades, new Comparator<Integer>()
 {
 public int compare(Integer x, Integer y)
 {
 return x-y; // Hack. Dangerous
 }
 } // Comparator<Integer>
);

Whoops. Might overflow.

Let’s generalize

2

public static <T> T[] sort(T[] vals, Comparator<T> order)

An object-oriented approach
Perhaps sort should be a mutator of the array class.

public class JavaArray
{
 public void sort(Comparator<T> order)
} // class JavaArray

Whoops. We can’t (usually) extend the built-in classes

Object-oriented strategy: Make objects that know how to sort

public interface Sorter { /* *Sort an array without mutation, return the sorted version. * * @pre * No
elements may be null. */ public T[] pureSort(T[] vals, Comparator order); /* * Sort an array in place. */
public sortInPlace(T[] vals, Comparator order); } // class

Do we also have sorting routines for things with a natural order, such as BigIntegers or Strings.

 public T[] pureSort(Comparable<T>[] vals) // Approximate syntax

Another design decision: Is the sorting algorithm "stable"?

Stable sorting algorithms guarantee that if A precedes B before sorting, and A is equal to B
(according to the comparator), then A is still before B in the sorted array.

Four algorithms to study

Insertion sort
Selection sort
Merge sort
Quicksort

Testing our sorting algorithm
Unit tests for sorting algorithms

Edge cases:
Something already in order
Something in backwards order
Something with extreme values (e.g., an array of integers using Integer.MAXVALUE and
Integer.MINVALUE)
Empty array
All the same.
Containing some strange values, like null

Normal cases

3

Making lots of cases
Random test

Generate a random array
Sort it
Check if it’s sorted
Check if the result is a permutation of the original

Generate a sorted array
Randomize it
Sort it
Compare to the original

Excessive
Try the previous with every permutation of the array

Copyright (c) 2013-14 Samuel A. Rebelsky.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

4

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2014S, Class 25: An Introduction to Sorting
	Preliminaries
	Upcoming Work
	Admin
	Questions on HW5

	The problem of sorting
	An object-oriented approach
	Testing our sorting algorithm

