Algorithms and OOD (CSC 207 2014S) : EBoards

CSC207.01 2014S, Class 25: An Introduction to Sorting

Overview

® Preliminaries.
O Upcoming work.
O Admin.
O Questions on the homework.
® The problem of sorting.
® An object-oriented approach.
® Testing our sorting algorithm.

Preliminaries

Upcoming Work

® Homework 5 isdue March 5.
® Reading for tomorrow: Sorting basics.

Admin

® Have fun with Earnest!
e | absfor the week are written. Readings are coming soon.
e | will take volunteers for note takers for Tuesday, Wednesday, and Friday. Extra credit for note
taking.
O MH Tuesday
O KSWednesday
O EB Friday
® Extracredit:
O Convocation, noon, Wednesday .
O Presentations on Grinnell institutional image, noon on Thursday or Friday.
O "We're cool, we're east campus, we just get B’s' hosts quizbowl! at Lyle's Tuesday night (we
think)
® Thingsyou should do
O Baancing acts Friday, Saturday, Sunday
O Neverland
e Don't forget mentor session tomorrow night

Questions on HW5

The problem of sorting

® Thegoa of sorting: To put thingsin an order.
® How does that relate to the goal of lists, in which you also put things in order?
O Liststhe client controls the order
O For sorting, there's a specific order that you want to use
® [or example you might sort an array
O Anarray of stringsin alphabetical order
O An array of integersin ascending order
O An array of integersin descending order
® \We might also sort
O Lists
O Two-dimensional arrays, perhaps along two dimensions
e \We probably wouldn’'t want to sort
O Stacks
® \When sorting arrays, how does the sorting algorithm know what order to put them in?
O We need away to compare each element

Let’swrite asignature
public AN ARRAY sort (AN ARRAY, THE THI NG THAT DOES THE COVPARI SONS)
Design issues:
® |sthisastatic method, or isit a method of the array class (a mutator)?
Let’s make that look more like Java
public int[] sort(int[] vals, Conparator<Integer> order)

Using this model

sort (grades, new Conpar at or <l nt eger >()

{

public int conpare(lnteger x, |Integer y)
{ return x-y; // Hack. Dangerous

} 3/ Conpar at or <I nt eger >
)

Whoops. Might overflow.

Let's generdize

public static <T> T[] sort(T[] vals, Conparator<T> order)

An object-oriented approach

Perhaps sort should be a mutator of the array class.

public class JavaArray

{

public void sort(Conparator<T> order)
} /1 class JavaArray

® \Whoops. We can't (usually) extend the built-in classes
Object-oriented strategy: Make objects that know how to sort

public interface Sorter { /* *Sort an array without mutation, return the sorted version. * * @pre * No
elements may be null. */ public T[] pureSort(T[] vals, Comparator order); /* * Sort an array in place. */
public sortinPlace(T[] vals, Comparator order); } // class

Do we also have sorting routines for things with a natural order, such as Biglntegers or Strings.

public T[] pureSort(Conparabl e<T>[] vals) // Approxi mate syntax
Another design decision: Is the sorting algorithm "stable"?

e Stable sorting algorithms guarantee that if A precedes B before sorting, and A is equal to B
(according to the comparator), then A is still before B in the sorted array.

Four algorithms to study

® [nsertion sort
® Sdlection sort
® Merge sort

® Quicksort

Testing our sorting algorithm
Unit tests for sorting algorithms

® FEdge cases:
O Something aready in order
O Something in backwards order
O Something with extreme values (e.g., an array of integers using Integer. MAXVALUE and
Integer . MINVALUE)
O Empty array
O All the same.
O Containing some strange values, like null
® Normal cases

® Making lots of cases
O Random test
® Generate arandom array
® Sortit
® Check if it's sorted
® Check if theresult is apermutation of the original
O Generate asorted array
® Randomizeit
® Sortit
® Compare to the original
O Excessive
® Try the previous with every permutation of the array

Copyright (c) 2013-14 Samuel A. Rebelsky.

Thiswork is licensed under a|Creative Commons Attribution 3.0 Unported Licensd To view acopy of this

license, visitlhttp://creati vecommons. org/ |l i censes/ by/ 3. 0/|or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, Caifornia, 94105, USA.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2014S, Class 25: An Introduction to Sorting
	Preliminaries
	Upcoming Work
	Admin
	Questions on HW5

	The problem of sorting
	An object-oriented approach
	Testing our sorting algorithm

