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Overview

Preliminaries. 
Admin. 
Questions.

Topics. 
The design of ADTs, revisited. 
Quick notes on implementation. 
A short motivating example. 
Exercise: Designing a list ADT.

Preliminaries

Upcoming Work

Readings for Friday to be posted Thursday night. 
Homework 5 is due next Wednesday (March 5), but you may need two weeks to get it done. 
The exam makeup is due Sunday at 10:30 p.m. There will be no extensions.

Admin

Earnest will be running class this Friday and next TWF. 
Review session tomorrow at 10 am. 
Extra credit: 

CS Extras, Thursday at 4:30 p.m.: The new CS Curriculum. 
Next week’s convocation on Wednesday. 
"No Chance Harris" Study Break on Friday.

Other cool things on campus 
Feminist film scholar tomorrow

Questions on the Makeup Exam

Questions on the Homework
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The design of ADTs, revisited
ADTs

Big picture: What does it do/what do we want it to do? "Philosophy" 
What methods achieve that goal? 
How do we use the ADT? 

What can it represent?
General design questions: 

Mutable or immutable? 
Are there common methods this should include/exclude? 
Minimalist or maximalist?

Data Structures

What’s the "big picture" of the underlying implementation 
Shove it in an array 

In the natural order 
With some additional ordering dataa

Use small things connected with pointers/references
Fields 
Implement all of the methods. 
Analyze the implementation: How efficient is it

Methods

What do they do? 
What type should they return? 
What parameters should they take? 
What exceptions should they throw? 
Design questions 

Can I generalize this? * 

Thinking about lists:

Big picture philosophy: A dynamic/mutable ordered set of data 
Some number of elements 
Put in order by the client 
Ordered: Come in sequence; connected; linear 
"iterable" - we can step through the elements

Uses: 
Store collections of similar things 
Mutable strings 
Represent strange mathematical objects, such as classes

Methods: 
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find 
iterate (may be multiple methods) 
remove 
add

Example: insert

values.insert("the answer");

Parameters: object to insert, and the place
What’s a place?
   An integer index - but that can lead to inefficient implementation

Exercise: Designing a list ADT
What parameters would you give to each variation of the remove method? 
What parameters would you give to each variation of the insert method? 
What would iterate look like? 
What do we mean by "a position"? 
Can you design some of these in such a way that they permit O(1) (that is, constant time)
implementations in, say, linked lists.

How do we represent positions?

"Each list has a current element." 
Read "Lists with current considered harmful." 
Only one position limits you.

So make a "Position" object 
We can have either List l; Position p = l.getPosition(); l.advance(p); p.advance(); // 1 
l.insertAt(p, value); 

vs. p.insert(value)
l.deleteAt(p); 

vs. p.delete()
l.get(p) 

vs. p.get()
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