
Algorithms and OOD (CSC 207 2014S) : EBoards

CSC207.01 2014S, Class 23: OOD in Practice: Designing
a List Interface

Overview

Preliminaries.
Admin.
Questions.

Topics.
The design of ADTs, revisited.
Quick notes on implementation.
A short motivating example.
Exercise: Designing a list ADT.

Preliminaries

Upcoming Work

Readings for Friday to be posted Thursday night.
Homework 5 is due next Wednesday (March 5), but you may need two weeks to get it done.
The exam makeup is due Sunday at 10:30 p.m. There will be no extensions.

Admin

Earnest will be running class this Friday and next TWF.
Review session tomorrow at 10 am.
Extra credit:

CS Extras, Thursday at 4:30 p.m.: The new CS Curriculum.
Next week’s convocation on Wednesday.
"No Chance Harris" Study Break on Friday.

Other cool things on campus
Feminist film scholar tomorrow

Questions on the Makeup Exam

Questions on the Homework

1

The design of ADTs, revisited
ADTs

Big picture: What does it do/what do we want it to do? "Philosophy"
What methods achieve that goal?
How do we use the ADT?

What can it represent?
General design questions:

Mutable or immutable?
Are there common methods this should include/exclude?
Minimalist or maximalist?

Data Structures

What’s the "big picture" of the underlying implementation
Shove it in an array

In the natural order
With some additional ordering dataa

Use small things connected with pointers/references
Fields
Implement all of the methods.
Analyze the implementation: How efficient is it

Methods

What do they do?
What type should they return?
What parameters should they take?
What exceptions should they throw?
Design questions

Can I generalize this? *

Thinking about lists:

Big picture philosophy: A dynamic/mutable ordered set of data
Some number of elements
Put in order by the client
Ordered: Come in sequence; connected; linear
"iterable" - we can step through the elements

Uses:
Store collections of similar things
Mutable strings
Represent strange mathematical objects, such as classes

Methods:

2

find
iterate (may be multiple methods)
remove
add

Example: insert

values.insert("the answer");

Parameters: object to insert, and the place
What’s a place?
 An integer index - but that can lead to inefficient implementation

Exercise: Designing a list ADT
What parameters would you give to each variation of the remove method?
What parameters would you give to each variation of the insert method?
What would iterate look like?
What do we mean by "a position"?
Can you design some of these in such a way that they permit O(1) (that is, constant time)
implementations in, say, linked lists.

How do we represent positions?

"Each list has a current element."
Read "Lists with current considered harmful."
Only one position limits you.

So make a "Position" object
We can have either List l; Position p = l.getPosition(); l.advance(p); p.advance(); // 1
l.insertAt(p, value);

vs. p.insert(value)
l.deleteAt(p);

vs. p.delete()
l.get(p)

vs. p.get()

Copyright (c) 2013-14 Samuel A. Rebelsky.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

3

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2014S, Class 23: OOD in Practice: Designing a List Interface
	Preliminaries
	Upcoming Work
	Admin
	Questions on the Makeup Exam
	Questions on the Homework

	The design of ADTs, revisited
	Exercise: Designing a list ADT

