
Algorithms and OOD (CSC 207 2014S) : EBoards

CSC207.01 2014S, Class 22: Detour: Anonymous Inner
Classes

Overview

Preliminaries.
Upcoming work.
Admin.
Questions.

Anonymous inner classes - the concept.
Anonymous inner classes - the implementation.
Some subtleties.
Lab.

Preliminaries

Upcoming Work.

Homework 5 is due next Wednesday (March 5), but you may need two weeks to get it done.
The exam makeup is due Sunday at 10:30 p.m. There will be no extensions.
No reading for tomorrow.
Lab writeup (whoops, coming soon)

Admin

MathLAN may or may not be acting up again. Yesterday morning was backups left over from the
weekend. I’m not sure what last night was, or what today will bring.
I took off 1/4 point for incorrect tarballs. A few of you talked to me about it and I accept that for the
first exam, a bit of carelessness or confusion is possible. I will restore those points if you show me
that I took them off.
Review session tonight at 7pm
Extra credit:

Town hall meeting Today at noon or 7:30pm.
Wellness fair, around the JRC, 5:30-8:00 pm
CS Extras, Thursday at 4:30 p.m.: The new CS Curriculum.
More?

1

Questions

Anonymous inner classes - the concept
Sometimes you want functions and it’s not worth your time/effort to name them.

(set! grades (map (l-s + .25) grades))

vs.

(define fixgrade
 (lambda (x) (+ .25 x)))
(set! grades (map fixgrade grades))

First is shorter

Giving something a name takes mental energy and pollutes the namespace.

In Java, anonymous things are also useful

When sorting, we need a way to compare values
When searching, we need a way to determine if we’ve found the desired value

And we may need to build values on the fly.

In Java, anonynous is particularly useful because we have to write a lot when we declare a new class.

Java has anonymous classes

We use them to provide the functions that we need above.

Anonymous inner classes - the implementation
new Interface() { Method implementations }

E.g.,

public interface Checker { public boolean okay(Object o); } // interface Checker

public class Sam { public static Object search(Object[] values, Checker check) { for (v : values) if
(check.okay(v)) return v; } // search(Object[], Checker) } // class Sam

Sam.search(students, new Checker() { public boolean okay(Object o) { return o.toString.contains("k"); } //
okay } // Checker);

public class SamR { public static Object searchByString(Object[] values, final String str) {
Sam.search(students, new Checker() { public boolean okay(Object o) { return o.toString.contains(str); } //
okay } // Checker); } } // class SamR

2

Some subtleties
How do you deal with fields?
How do you deal with fields of the enclosing object?
How do you deal with parameters of the enclosing method?
Can we do this with subclassing, too?

Copyright (c) 2013-14 Samuel A. Rebelsky.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

3

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2014S, Class 22: Detour: Anonymous Inner Classes
	Preliminaries
	Upcoming Work.
	Admin
	Questions

	Anonymous inner classes - the concept
	Anonymous inner classes - the implementation
	Some subtleties

