
Algorithms and OOD (CSC 207 2014S) : EBoards

CSC207.01 2014S, Class 20: Reasoning About Loops with
Loop Invariants

Overview

Preliminaries.
Admin.
Upcoming work.
HW5.

Topics.
Writing correct iterative algorithms.
The state of a program.
Loop invariants.
Loop termination.
An exercise: Binary search.

Lab.

Preliminaries

Admin

Exam 1 due now!
Yesterday’s review session may or may not have some interesting notes.
Yet another reminder to think about internships.
Extra credit:

CS Table today: Skip Lists
Town hall, Tuesday, noon or 7 pm
CS Extras next week: The new CS Curriculum
More?

Upcoming Work

Reading for Monday: Anonymous Inner Classes.
Yes, it’s ready.
Yes, I’m likely to update it anyway.
No, it won’t matter whether you read it before or after the update.

No writeup for today.
Homework 5.

1

Homework 5

Choose your own partners. You may also work alone. You will be tested on many of these topics, so
"divide and conquer" is not a good approach.

Part one: Solve some recurrence relations.

Part two: Implement Dutch National Flag, using invariants.

Details on what the problem is today.

Assumption:

public interface Classifier<T>
{
 /**
 * Classify val into one of three categories, which we call
 * "red", "white", and "blue" for convenience. If val is red,
 * returns a negative number. If val is white, returns zero.
 * If val is blue, returns a positive number.
 */
 public int classify(T val);
} // interface Classifier

or

public interface StringClassifier
{
 /**
 * Classify val into one of three categories, which we call
 * "red", "white", and "blue" for convenience. If val is red,
 * returns a negative number. If val is white, returns zero.
 * If val is blue, returns a positive number.
 */
 public int classify(String val);
} // interface StringClassifier

or

public interface StringClassifier
 implements Classifier<String>
{
} // interface StringClassifier

Part three: Implement Skip lists of strings, using invariants.

Implementation details in the CS table article.

Interface

public interface StringSet
{
 /**
 * Determine if the set contains a particular string.

2

 */
 public boolean contains(String str);

 /**
 * Add an element to the set.
 *
 * @post contains(str)
 */
 public void add(String str);

 /**
 * Remove an element from the set.
 *
 * @post !contains(str)
 */
 public void remove(String str);
} // interface StringSet

Part four: Implement iterative logn exponentiation, using invariants

Writing correct iterative algorithms
Testing is one approach to correctness. But it’s retrospective.
We’d also like tools that help us think about design of algorithms.

The state of a program
In replacing elements in MutableStrings, we probably thought about

An array of characters
The position of the first matched pattern
The relative sizes of the pattern and replacement
The expected result
Where we look next

We think better about state if we write it down and reason about it.

Loop invariants
Loops are chunks of code that do something again and again and again with a hope of achieving some
goal.
We want to think carefully about what one pass through the loop does.
Loop invariants: Something you can assume that the invariant holds at the beginning of the loop.

Also something you can be sure of at the end of the loop
This may not sound like progress, but we’ll work with it in a way that assures progress.
Goal: The loop invariant is something that is useful.

You know the loop invariant holds when the loop finishes.
You know the loop has finished.

3

Hopefully, this combination of facts implies that we’ve achieved our goal.

Writing Loop Invariants
Write or draw a picture that indicates what you expect about the state of the system.
Figure out how to make it true before the loop starts.
Figure out what else you need to know at the end.

Loop termination
Some metric of size (work remaining)
Show that size decreases at every repetition.

An exercise: Binary search
/**
 * Find the index of val in values.
 */
public static int binarySearch(int[] values, int val)
{
 int lb = 0;
 int ub = values.length;

 // Invariant A: for all i, 0 <= i < lb, values[i] < val
 // Invariant B: for all i, ub <= i < length, values[i] > val
 while ((ub - lb) > 0)
 {
 int mid = average(lb, ub);
 if (values[mid] < val)
 lb = mid+1;
 else if (values[mid] > val)
 ub = mid;
 else
 return mid;
 } // while
 // At this point
 // Invariant A: for all i, 0 <= i < lb, values[i] < val
 // Invariant B: for all i, ub <= i < length, values[i] > val
 // lb >= ub
 // The element is not there
 throw new NotFound();

} // binarySearch(int[], int)

Lab
Copyright (c) 2013-14 Samuel A. Rebelsky.

4

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

5

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2014S, Class 20: Reasoning About Loops with Loop Invariants
	Preliminaries
	Admin
	Upcoming Work
	Homework 5

	Writing correct iterative algorithms
	The state of a program
	Loop invariants
	Writing Loop Invariants
	Loop termination
	An exercise: Binary search
	Lab

