Algorithms and OOD (CSC 207 2014S) : EBoards

CSC207.01 2014S, Class 20: Reasoning About L oops with
L oop Invariants

Overview

® Preliminaries.
o Admin.
O Upcoming work.
O HWS5.
® Topics.
O Writing correct iterative algorithms.
The state of a program.
Loop invariants.
L oop termination.
An exercise: Binary search.

O O OO

e Lab.

Preliminaries

Admin

Exam 1 due now!
Y esterday’ s review session may or may hot have some interesting notes.
Y et another reminder to think about internships.
Extra credit:
O CSTabletoday: Skip Lists
O Town hall, Tuesday, noon or 7 pm
O CS Extras next week: The new CS Curriculum
O More?

Upcoming Work

® Reading for Monday: Anonymous Inner Classes.

O Yes, it'sready.

O Yes, I'mlikely to update it anyway.

O No, it won't matter whether you read it before or after the update.
e No writeup for today.
® Homework 5.

Homework 5

Choose your own partners. You may also work alone. You will be tested on many of these topics, so
"divide and conquer” is not a good approach.

Part one: Solve some recurrence relations.
Part two: Implement Dutch National Flag, using invariants.
e Details on what the problem is today.

® Assumption:

public interface O assifier<T>

{
/**
* Classify val into one of three categories, which we call
* "red", "white", and "blue" for convenience. |If val is red,
* returns a negative nunber. If val is white, returns zero.
* |f val is blue, returns a positive nunber.
*/

public int classify(T val);
} /] interface dassifier

or

public interface StringCd assifier

{

/**

* Classify val into one of three categories, which we call

* "red", "white", and "blue" for convenience. |If val is red,
* returns a negative nunber. If val is white, returns zero.
* |f val is blue, returns a positive numnber.

*/

public int classify(String val);
} I/ interface Stringd assifier

or

public interface StringC assifier
i mpl enents O assifier<String>

{

} /] interface Stringd assifier
Part three: Implement Skip lists of strings, using invariants.
® |Implementation detailsin the CStable article.

® [nterface

public interface StringSet

{

/**

* Determine if the set contains a particular string.

*/
publ i c bool ean contains(String str);

/**

* Add an elenent to the set.

*

* @ost contains(str)
*/
public void add(String str);

/**

* Renpve an el ement fromthe set.

*

* @ost !contains(str)
*
/
public void renove(String str);
} I/ interface StringSet

Part four: Implement iterative logn exponentiation, using invariants

Writing correct iterative algorithms

® Testing is one approach to correctness. But it’s retrospective.
e We'daso liketoolsthat help usthink about design of algorithms.

The state of a program

® |nreplacing elementsin MutableStrings, we probably thought about
An array of characters
The position of the first matched pattern
The relative sizes of the pattern and replacement
The expected result
O Where we look next
o \Wethink better about state if we write it down and reason about it.

O O O O

L oop invariants

® | oops are chunks of code that do something again and again and again with a hope of achieving some
goal.
o Wewant to think carefully about what one pass through the loop does.
® | oop invariants: Something you can assume that the invariant holds at the beginning of the loop.
O Also something you can be sure of at the end of the loop
e Thismay not sound like progress, but we'll work with it in away that assures progress.
® Goal: Theloop invariant is something that is useful.
O You know the loop invariant holds when the loop finishes.
O You know the loop has finished.

O Hopefully, this combination of facts implies that we' ve achieved our goal.

Writing Loop Invariants

e \Write or draw a picture that indicates what you expect about the state of the system.
® Figure out how to make it true before the loop starts.
® Figure out what else you need to know at the end.

L oop ter mination

® Some metric of size (work remaining)
® Show that size decreases at every repetition.

An exercise: Binary search

/**
* Find the index of val in values.
*/
public static int binarySearch(int[] values, int val)
{
int Ib =0;
int ub = val ues. | ength;
/1 lnvariant A: for all i, 0 <=1i < Ib, values[i] < val
/1 Invariant B: for all i, ub <= i < length, values[i] > val
while ((ub - Ib) > 0)
{
int md = average(lb, ub);
if (values[mid] < val)
Ib = md+1;
else if (values[nid] > val)
ub = md;
el se
return md;
} /1 while
/1 At this point
/1 lnvariant A: for all i, 0 <=i < Ib, values[i] < val
/1 Invariant B: for all i, ub <= i < length, values[i] > val
/!l Ib >= ub

// The elenent is not there
t hr ow new Not Found() ;

} /1 binarySearch(int[], int)

Lab

Copyright (c) 2013-14 Samuel A. Rebelsky.

Thiswork is licensed under a|Creative Commons Attribution 3.0 Unported Licensd. To view acopy of this
license, visit|http://creati veconmons. org/ i censes/ by/ 3. 0/]or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2014S, Class 20: Reasoning About Loops with Loop Invariants
	Preliminaries
	Admin
	Upcoming Work
	Homework 5

	Writing correct iterative algorithms
	The state of a program
	Loop invariants
	Writing Loop Invariants
	Loop termination
	An exercise: Binary search
	Lab

