
Algorithms and OOD (CSC 207 2014S) : EBoards

CSC207.01 2014S, Class 19: Linear and Binary Search

Overview

Preliminaries.
Admin.
Upcoming work.
Questions on the exam.

Analysis of binary search.
Functions as parameters.
Generics (e.g., Comparator)
Lab.

Preliminaries

Admin

Start Eclipse!
Today’s self-gov problems

How do we get students to wash their hands?
What should first-year students do during spring break?

Couch surf at friends and family
I looked at some C code with Walker today. I apologize for the extreme differences in our
approaches.

Do you need more explanation of my perspective?
Tomorrow’s review session is up in the air; the storm may change my plans. I’ll send email tonight.
Reminder: Summer research applications are (mostly) due on Friday.
Extra credit:

CS Extras: Technical Interviews
CS Table: Skip Lists
More?

Upcoming Work

Finish the exam.
Email me questions!

Today’s writeup: Exercise 3
Subject: CSC 207 Writeup 10: Searching (OPTIONAL NAME)

Reading for friday: Loop Invariants (forthcoming)

1

Questions on the exam

Analyzing binary search
Analyzing iterative and recursive algorithms

Iterative:

Count the number of times each loop runs.
Count the number of steps in the loop.
Multiply.

(define insertion-sort (lambda (lst) (let loop ([remaining lst] [sorted null]) (if (null? remaining) sorted
(loop (cdr remaining) (insert (car remaining) (sorted)))))))

Analysis

n repetitions
each involves 1 test, 1 cdr, 1 call to insert
A call to insert is in O(n)
n*(3 + n) = n^2 + 3n is in O(n^2)

Recursive functions:

Write a recurrence relation for running time
Make that recursive definition non-recursive (closed form)
Typical informal mechanisms:

Work out values, starting at the bottom
Continually expand, look for a pattern

t(n) = c + t(n/2) t(1) = d t(2) = c + t(2/2) = c + t(1) = c + d t(4) = c + t(4/2) = c + t(2) = c + c + d = 2c
+ d t(8) = c + t(8/2) = c + t(4) = c + 2c + d = 3c + d t(2^4) = t(16) = c + t(8) = c + 3c+d = 4c + d

pattern: t(2^k) = k*c + d

t(n) = c + t(n/2) = c + c + t(n/4) = 2c + t(n/4) = 2c + c + t(n/8) = 3c + t(n/8) = 3c + c + t(n/16) = 4c +
t(n/16)

pattern: t(n) = kc + t(n/2^k) When n = 2^k, this is t(n) = kc + t(1) = kc + d When n = 2^k, k = log2(n)
So t(n) = log2(n)c + d is in O(log_2(n))

Functions as parameters
When you write a searching or sorting algorithm, you often want a function as a parameter

2

;;; Find the first ok thing in the list
(define search
 (lambda (lst ok?)
 (if (null? lst)
 #f
 (if (ok? (car lst))
 (car lst)
 (search (cdr lst) ok?)))))

Java does not (currently) allow functions as first class values. But it does allow objects/interfaces as
first-class values. Instead of passing in a function, we pass in an object that contains that function/method.

public interface Predicate
{
 public boolean ok(Object o);
} // interface Predicate

public class LessThanTwo
 implements Predicate
{
 public boolean ok(Object o)
 {
 return (o instanceof Number) &&
 (((Number) o).doubleValue < 2.0);
 } // ok

} // class LessThanTwo

Great idea in Scheme: Anonymous functions

(search students (lambda (student) (and (here? student) (awake? student))))

Java has anonymous classes! We’ll look at them later.

What’s the difference between Java’s Comparator and Comparable?

Comparable: Something that has a natural ordering: Thing 1, compare yourself to Thing 2
Comparator: Something taht knows how to compare, using a desired ordering Each comparator takes
two things and says which "comes first" using some criterion.

Generics (e.g., Comparator<T>)
See forthcoming reading.

Lab
What’s wrong with the following?

3

if (vals[mid] > val)
 vals = Arrays.copyOfRange(vals, 0, mid);
else if (vals[mid] < val)
 vals = Arrays.copyOfRange(vals, mid+1, vals.length);

int mid = lower + upper/2;

int mid = (lower + upper)/2;

I’m proud of you.

Copyright (c) 2013-14 Samuel A. Rebelsky.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

4

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2014S, Class 19: Linear and Binary Search
	Preliminaries
	Admin
	Upcoming Work
	Questions on the exam

	Analyzing binary search
	Functions as parameters
	Generics (e.g., Comparator<T>)
	Lab

