
Algorithms and OOD (CSC 207 2014S) : EBoards

CSC207.01 2014S, Class 14: Interfaces and
Polymorphism

Overview

Preliminaries.
Admin.
Upcoming Work.
Questions.

Polymorphism in General
Interfaces in Java.
Polymorphism in Java.
Lab.

Preliminaries

Admin

Food! (Within some interpretations of the word.)
Thanks for making it to class in the lovely weather. (At least to those of you who made it to class.)
Mentor sessions are moving to Tuesday nights at 8, starting next week.
I will not be holding a review session on Thursday. Sorry.
Reminder: If you are planning to do work in CS and you haven’t started applying for internships and
such, you should be doing so soon!
This lab and the next lab will probably take a class-and-a-half each, particularly as we insert
explanations and such.
I plan to distribute the exam in class tomorrow.
Think about questions to ask WH on Monday.
Extra credit:

CS Extra Thursday at 4:30: Stone on Red/Black Trees
CS Table Friday at noon: Law, Order, and Computers
Dance ensemble with Beloit, April 6 or 7. Somewhere in Chicago.
More?

Upcoming Work

Reading for Wednesday: Inheritance.
Today’s writeup: Exercise 7 (one of the three options)

CSC 207 Writeup 9: Polymorphism
Due Friday.

1

Keep working on homework 4!

Questions on the Homework

How do I identify the fractions if I also have division?

EW says "There are spaces between the values and operations, and fractions won’t have the spaces."

3 / 4/5 is "three divided by 4/5"

3/4 / 5 is "3/4 divided by 5"

3/4/5 is EXCEPTIONAL

What do you mean by "swap out" the interface?

You have a UI in the main. It calls sensible helper procedures to do the real work.

How do we use the registers?

I’d do something like the following

 Fraction registers[] = new Fraction[8];

 ...

 registers[regnum] = ...;

So, the Calculator class needs methods to store (and maybe get) values from registers?

Yes.

Should the constructor reduce fractions to simplest form an ensure that they have a positive denominator?

Yes.

So someone can write new Fraction(33,-99) and get -1/3?

Yes.

Polymorphism
Generally: The idea that you should not have to write nearly-identical code for nearly-identical inputs.

Why not copy-paste-change?

Sam says it’s a bad idea. You should write general code.
The agile manifesto says so. (or EW says that JS says the agile manifesto says so.)
Wastes programmer time to write the similar procedures.

Wastes programmer time to have to read all the similar junk.

2

Wastes space - lots of duplicated stuff.
Expands the amount of effort to make a change.
Some people (see above) claim that when you write general code, you think more carefully about it.
Duplicated code increases the chance to make a mistake.

In Scheme

(define square (lambda (x) (* x x)))

We’d like to do something similar in Java, except ...

Kinda high level. Maybe abstraction is expensive.

Dangerous! We don’t know until runtime whether or not it’s save to use square on a value. Can we
square strings? Can we square images?

Java likes to know at compile time that an operation is likely to be safe.

Ideally, the generalized procedure says "I need this characteristic of the objects", objects say "I have
this characteristic", and Java can check both issues.

Interfaces
A mechanism to describe characteristics.

An interface is a promise to implement procedures.

public Interface Multipliable { public Object multiply(Object other) throws
IncompatibleTypeException; }

public Object square(Multipliable m) { return m.multiply(m); }

Promise to meet characteristics with an implemetns clause

public class ComplexNumber implements Multpliable { }

Polymorphism in Java
You can treat interfaces as types

Parameters to methods
Variables
Etc.

Often something we take advantage of in our own code, rather than relying on particular Java
interfaces.

Useful standard interfaces include Iterable, Comparable, Cloneable

3

Text Boxes
Three methods

rows
cols
getrow

Useful for describing interesting textual things

Lab
Copyright (c) 2013-14 Samuel A. Rebelsky.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

4

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2014S, Class 14: Interfaces and Polymorphism
	Preliminaries
	Admin
	Upcoming Work
	Questions on the Homework

	Polymorphism
	Interfaces
	Polymorphism in Java
	Text Boxes
	Lab

