
Algorithms and OOD (CSC 207 2014S) : EBoards

CSC207.01 2014S, Class 05: Classes and Objects

Overview

Preliminaries.
Admin.
A few notes on writeup 3.
Questions.

A brief introduction to objects.
An exercise: Modeling Ushahidi.

Preliminaries

Admin

Study break at 8 pm tonight in the commons. Peter is making cookies.
For second years: Special extra credit for attending the lunch session you were invited to.
I think I’ve responded to all of the writeups I’ve received as of 10 pm last night.
I think I’ve responded to HW1.

FAQ updated.
Lessons added.

No lab today! We’ll do some small group and large group design.
Does anyone need a partner for the assignment?
Extra credit:

CS Extras, Thursday: Ushahidi, Android, and 207 by Spencer, Daniel, and Lea.
CS Table Friday: The ACM Code of Ethics
Convo Feb. 5. (I’ll give my "Why go to convo" lecture closer to the date.)

A Few Notes on Writeup 3

If your code is incorrect, you have an obligation to let me know that you know that it is incorrect.
I’m not sure why we no longer get an error based on the overflow, but I’d swear I did last semester.
A question about changing the preconditions: Are your new preconditions biased toward a particular
implementation?
For those of you who said "I’d change the implementation", how would you

For your unit testing, the following is not a great test statement

for (int base = -100; base < 100; base++) { expected = 1; for (int power = 0; power < 10; power++) {
assertEquals ("Testing", expected, SampleMethods.expt (base, power)); expected *= base; } // for
each power } // for each base

1

If the test fails, you’ll only see the "Testing" message. You’d probably prefer to see the base and
power too.

assertEquals ("Testing " + base + "^" + power,
 expected, SampleMethods.expt (base, power));

I’ll admit that I often end up doing something like

int result = SampleMethods.expt (base, power);
if (result != expected)
 {
 fail ("For " + base + "^" + power + ", expected " +
 expected + ", got " + result);
 } // if we did not get the expected result.

Doesn’t 100^10 overflow? You probably want to have a more sensible stopping condition
(perhaps involving a while loop).

For testing the double version, you’ll probably need to have a "close enough" metric (see
documentation). assertEquals (message, expected, formula, ACCURACY)

Questions on HW2

Are you okay with the seemingly inefficient looping (or recursive) solution to isOdd?

Yes.

But smart programmers who think in C can probably find a more efficient solution.

Can we use a loop for oddSumTo?

Yes, but you shouldn’t need one.

A brief introduction to objects
Objects encapsulate data and methods that work with those data.

structs
plus functions on those structs (methods)
plus hiding the fields of the struct

Kinds of methods
Constructors: Build new objects (given some data)
Observers: Extract information (e.g., ask for title of library book)
Mutators: Change the object

Check out a library book
Like all classification systems, this breaks down rather quickly

Complex c = new Complex(1,2);
c.multiplyBy(c) - returns a new complex number

So is multiplyBy a Constructor?

2

Or is it an observer?
Or is it both

As you design an object
What information will the client want to get?
What information will we allow the client to change?
What information do we need to build a new object?

An exercise: Modeling Ushahidi
Context:

Crowdmapping with anonymity and some verification

Design Issues:

What are the objects you’d want to model this system?
What methods would you associate with those objects?

Objects

Map (database?) - Contains the locations of the posts -
Incident - Information on a single incident

Categoriezed, giving you different types of incidents?
User - With classification (or subclassing) to inform us about capabilities
Server - Something you submit information to and get information from
Location - Used for incidents (and maybe for the map)

Longitude
Latitude
Place name (optional)

Time - Used for incidents

Time

Constructors
Inputs: Year, month, day, hour, minutes, seconds ...
Inputs: Timezone, Year, month, day, hour, minutes, seconds ...
Inputs: NONE - Give the current time (now)
Inputs: Unix time model (milliseconds since "the beginning of time")
Inputs: Month and day (rest is implict or unnecessary)
Inputs: String description

Observers
getMonth, getDay, getYear, getWeekday, ...

With and without timezone
getDifferenceBetween (another date)

Mutators

3

Do we want to edit dates?

Incidents

Constructors
Observers
Mutators

Copyright (c) 2013-14 Samuel A. Rebelsky.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

4

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2014S, Class 05: Classes and Objects
	Preliminaries
	Admin
	A Few Notes on Writeup 3
	Questions on HW2

	A brief introduction to objects
	An exercise: Modeling Ushahidi

