
Algorithms and OOD (CSC 207 2013F) : EBoards 

CSC207.01 2013F, Class 53: Using Java from the
Command Line

Overview

Preliminaries. 
Admin. 
Questions/comments on the homework.

A brief overview. 
Ant. 
Lab.

Preliminaries

Admin

Candy Canes and Clementines! 
Study break 8-10 tonight, Smoothies! (May run out early.) 
Who has an OCS recommendation that I need to fill out? 

EW, DG, JGS, ...
I hope to distribute most of the exam tomorrow. (I’ll probably leave the code until HW11 is turned
in.) 
Upcoming extra credit opportunities: 

CS Extra: Multiple Models of Mediascripting 
CS Table Friday: TBD

Questions/Comments on the Homework

Sam’s short comments

You are effectively building a tree. 
If you’re building a tree-like structure, do you want to use iteration or recursion? 
Basic operation: Look at the next character 

Open brace: It’s an object, parse the object 
Open square bracket: It’s a list 
Double quotation mark: It’s a string (don’t have to worry about \u, but do have to worry about \"
and \) 
Digit: It’s a number 
Etc.

1



Should we split at quotation marks or simply step through the characters?

You should step through the characters. Quotation marks can have too many meanings.

When is a digit going to happen?

{"id":23}

A brief overview
Goal: Escape from Eclipse 
Why? 

May be more efficient with other editors. 
Want less startup time. 
Want to know what’s going on "behind the scenes"

javac - Compile a .java file 
java - Run a compiled .java file 
CLASSPATH - Environment variable that tells where to look for other compiled Java files. 

In most Unix/Linux variants, there are user-specific variables that let you configure the system
(e.g., where to look for programs, where to look for Java stuff, what editor to use by default, ...) 
In bash, we set them with $ export VARIABLE=value; view with $ printenv VARIABLE

jar - Join lots of compiled Java files into a single "package" 
javadoc - Generate documentation 
junit - Run unit tests

Ant
A typical project has lots of things to do - compile, join into an application, test, run a program, clean
up temporary files, etc. 
In C, we write Makefiles. 
The folks at Apache built Ant as a Java-oriented alternative to Make.

Lab
Copyright (c) 2013 Samuel A. Rebelsky. 

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

2

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2013F, Class 53: Using Java from the Command Line
	Preliminaries
	Admin
	Questions/Comments on the Homework

	A brief overview
	Ant
	Lab


