
Algorithms and OOD (CSC 207 2013F) : EBoards 

CSC207.01 2013F, Class 49: Heaps

Overview

Preliminaries. 
Admin. 
Questions.

Priority queues, revisited. 
Recent implementation techniques. 
Heaps. 
Adding elements to heaps. 
Removing elements from heaps. 
Heap sort.

Preliminaries

Admin

Exam 2 returned. 
I tried to be very detailed in my comments, even though I used a coarse-grained grading system. 
Please turn in your academic honesty statements. 
Please follow formatting conventions. 
I hope to distribute additional notes later this week.

Upcoming extra credit opportunities: 
Learning from Alumni Thursday: Erik Hanson (in person) 
CS Extras Thursday: Summer Opportunities in CS 
CS Table Friday: TBD. 
Swim meet Friday/Saturday. 
Any self-care week activity. 
One Grinnell rally on December 4 at 4pm (unless you are taking photos). 

And yes, I’ve sent a note to Dean Arora about the scheduling.

Priority queues, revisited
ADTs

Philosophy/Purpose 
Practicum (Use Cases) 
Procedures (Methods)

1



Priority queues

Philosophy: 
Put things in in any order, get them out in a highest-priority-first order.

Use Cases: 
Lots of them. News articles ... in order of popularity or date or .... 
If we can change priority, gives fairness in, say, a printer queue. 

We generally don’t allow priorities to change.
Sorting!

Procedures: 
put, get, peek

Implementation:

Unordered list/array 
put: O(1) 
get: O(n) 
peek: O(n)

Ordered array/list 
put: O(n) 
get: O(1) 
peek: O(1)

Recent implementation techniques
Trees - Two dimensional linked structures 
Hash tables - Clever uses of arrays

Heaps
Modified binary search tree 

Highest priority item at the top 
And balanced

A heap is a binary tree 
With the heap property 

The root is >= the root of each subtree 
Each subtree has the heap property

That is ’nearly complete’ 
Every level except the last level is complete 
The last level is shoved all the way to the left (or complete)

See whiteboard for sample heaps

2



Adding elements to heaps
Two invariants to maintain: Nearly complete and heap property 
Nearly complete seems harder to reconstruct if we’re doing other stuff, so we’ll prioritize that. 
Add the element at the end of the last level (or the beginning of the next level, if the last level is full). 
Yay! It’s still nearly complete. 
But it doesn’t satisfy the heap property. 
If the thing we just inserted is larger than the parent, 

swap with the parent 
and recurse up the tree

Problem: How do we get the parent? Magic.

Removing elements from heaps
The largest element is at the top 
Grab it (and be ready to return it) 
Grab the last thing on the last level and put it at the top 
The tree is now nearly complete 
Swap with larger child 
And recurse

Outstanding problems that we’ve relied on magic to resolve
How do you get the parent? (Parent pointer?) 
How do you get the last element on the last level? 
Where do you insert the next element before swapping up? 
The amazing TN tree representation: Put it into an array in breadth-first, left-to-right order, top-down
order 
If we also store size, the number of elements in the tree 

The next element goes in position size++ 
The last element is in position size-1 
The left child of p is at position 2p + 1 
The right child of p is at position 2p + 2 
The parent is (p minus 1 or 2)/2 

In C, this should ’floor it’, and we’ll be ok
Can you tell if a node at position p is a left child or right child? 

Left child is odd 
Right child is even

3



Heap sort
We have an array 
We want to sort it 
Turn it into a heap

Here’s the code:

// Turn the array into a heap
for (int i = 1; i < values.length; i++) {
   swapUp(i);
} // for
// Grab the largest element out of the heap and put them at
// the end.
for (int pos = values.length - 1; pos > 0; pos--) {
   swap(pos, 0);
   swapDown(0);
} // for

Analysis:

Adding an element is log_2(n) 
Removing an element is log_2(n) 
Adding all of the elements is O(nlogn) 
Moving all the elements into the sorted position is O(nlogn)

Yay! Another O(nlogn) algorithms

Quicksort is expected O(nlogn), can be O(n^2) 
Merge sort is O(nlogn) but requires extra space 
Heap sort is O(nlogn) and needs almost no extra memory

Copyright (c) 2013 Samuel A. Rebelsky. 

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

4

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2013F, Class 49: Heaps
	Preliminaries
	Admin

	Priority queues, revisited
	Recent implementation techniques
	Heaps
	Adding elements to heaps
	Removing elements from heaps
	Outstanding problems that we've relied on magic to resolve
	Heap sort


