Algorithms and OOD (CSC 207 2013F) : EBoards

CSC207.01 2013F, Class 49: Heaps

Overview

® Preliminaries.

O Admin.

O Questions.
Priority queues, revisited.
Recent implementation techniques.
Heaps.
Adding elements to heaps.
Removing elements from heaps.
Heap sort.

Preliminaries

Admin

® Exam 2 returned.
O | tried to be very detailed in my comments, even though | used a coarse-grained grading system.
O Pleaseturn in your academic honesty statements.
O Please follow formatting conventions.
O | hope to distribute additional notes later this week.
e Upcoming extra credit opportunities:
O Learning from Alumni Thursday: Erik Hanson (in person)
CS Extras Thursday: Summer Opportunitiesin CS
CSTableFriday: TBD.
Swim meet Friday/Saturday.
Any self-care week activity.
One Grinnell rally on December 4 at 4pm (unless you are taking photos).
® Andyes, I've sent a note to Dean Arora about the scheduling.

O O O OO

Priority queues, revisited
ADTs

® Philosophy/Purpose
® Practicum (Use Cases)
® Procedures (Methods)



Priority queues

® Philosophy:

O Put thingsinin any order, get them out in a highest-priority-first order.
® UseCases:

O Lotsof them. News articles ... in order of popularity or date or ....

O If we can change priority, givesfairnessin, say, aprinter queue.

® \Wegeneraly don't allow priorities to change.

O Sorting!
® Procedures:

O put, get, peek

Implementation:

® Unordered list/array
O put: O(2)
O get: O(n)
O peek: O(n)

® Ordered array/list
O put: O(n)
O get: O(1)
O peek: O(1)

Recent implementation techniques

® Trees- Two dimensiona linked structures
® Hash tables- Clever uses of arrays

Heaps

e Modified binary search tree
O Highest priority item at the top
O And balanced
® A heapisabinary tree
O With the heap property
® Theroot is>= the root of each subtree
® Each subtree has the heap property
O Thatis’nearly complete
® Every level except thelast level is complete
® Thelast level isshoved all the way to the left (or complete)
® See whiteboard for sample heaps



Adding elementsto heaps

Two invariants to maintain: Nearly complete and heap property
Nearly complete seems harder to reconstruct if we're doing other stuff, so we'll prioritize that.
Add the element at the end of the last level (or the beginning of the next level, if the last level isfull).
Yay! It's still nearly complete.
But it doesn’t satisfy the heap property.
If the thing we just inserted is larger than the parent,
O swap with the parent
O and recurse up the tree
Problem: How do we get the parent? Magic.

Removing elements from heaps

The largest element is at the top

Grab it (and be ready to return it)

Grab the last thing on the last level and put it at the top
Thetreeis now nearly complete

Swap with larger child

And recurse

Outstanding problemsthat we'verelied on magic to resolve

How do you get the parent? (Parent pointer?)
How do you get the last element on the last level ?
Where do you insert the next element before swapping up?
The amazing TN tree representation: Put it into an array in breadth-first, left-to-right order, top-down
order
If we also store size, the number of elementsin the tree
O The next element goesin position sizet++
Thelast element isin position size-1
Theleft child of pisat position2p + 1
Theright child of pisat position 2p + 2
The parent is (p minus 1 or 2)/2
® |nC, thisshould 'floor it’, and we'll be ok
Canyou tel if anode at position p isaleft child or right child?
® | eft childisodd
® Right childiseven

O O O O

o



Heap sort

® Wehavean array
® \Wewant to sort it
e Turnitinto aheap

Here' sthe code:

/1 Turn the array into a heap
for (int i =1; i < values.length; i++) {
swapUp(i);
Yy 11 for
/1l Grab the largest elenent out of the heap and put them at
/1 the end.
for (int pos = values.length - 1; pos > 0; pos--) {
swap(pos, 0);
swapbown( 0) ;
Yy 11l for

Anaysis:

Adding an element islog_2(n)

Removing an element islog_2(n)

Adding al of the elementsis O(nlogn)

Moving al the elements into the sorted position is O(nlogn)

Yay! Another O(nlogn) agorithms

® Quicksort is expected O(nlogn), can be O(n"2)
® Merge sort is O(nlogn) but requires extra space
® Heap sort is O(nlogn) and needs almost no extra memory

Copyright (c) 2013 Samuel A. Rebelsky.

Thiswork is licensed under a|Creative Commons Attribution 3.0 Unported Licensd. To view a copy of this
license, visit|htt p: // creati vecormons. or g/ | i censes/ by/ 3. 0/|or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.



http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2013F, Class 49: Heaps
	Preliminaries
	Admin

	Priority queues, revisited
	Recent implementation techniques
	Heaps
	Adding elements to heaps
	Removing elements from heaps
	Outstanding problems that we've relied on magic to resolve
	Heap sort


