
Algorithms and OOD (CSC 207 2013F) : EBoards

CSC207.01 2013F, Class 44: Trees, Generalized

Overview

Preliminaries.
Admin.
Questions on the exam.

Thinking about trees.
Trees, abstracted.
A linked implementation.

Preliminaries

Admin

What did you think about yesterday?
Fixed unit test for problem 1.
Upcoming extra credit opportunities:

CS Department Talk, Today, Noon (with Pizza), 3821 Writing Bug-Free Code with Theorem
Provers
CS Table Friday, The New Curriculum
Hamlet, Friday (7:30 pm), Saturday (7:30 pm), Sunday (2:00 pm)
Swim meet Saturday at some time
Typhoon Halyan Relief benefit show, Sunday, November 24th from 7-9pm in Harris. (If the
entry fee is a burden, let me know and I’ll give you the money.)
"Data Sovereignty: The Challenge of Geolocating Data in the Cloud", November 25, 4:15 JRC
101
"Gold Fever" by Andrew Sherburne ’01 or so, 7:00 p.m., Monday, November 25, ARH 302
Tuesday, November 26, 4:15 p.m., JRC 209 a gaming event with the game [d0x3d!]

Questions on the exam

Is the prologue up yet?

The prologue is now available at http://bit.ly/207exam2pro

Any hints on dealing with the functions as objects problem?

I’d suggest that you first write the functions assuming that all of the types are integers. Once you’ve
gotten that working, you can start to think about the generic types.

1

http://bit.ly/207exam2pro

Can you explain the Iterator.remove method?

It removes the value you’ve just seen.

Suppose we have the list a b c d and want to remove the b

Iterator<...> it = list.iterator();
it.next(); // Returns a
it.next(); // Returns b
it.remove(); // Removes b

If we pass all of the unit tests you provide, is our answer correct?

In general, yes. However, you still must take a reasonable approach. For example, you could simulate
deletion in BSTs by putting null in as the value and then doing some clever maniuplations. But I
specify that your really do have to delete nodes and rearrange the tree.

_What should we make anonymous and inner in the iteration problem?

Just the iterator. (You might make the node and cursor inner classes, but it’s not necessary.)

Thinking about trees
Big idea: A third way to structure data!

Chunk of data - Array
Linearly Linked nodes
Trees: Links go in multiple directions

Trees can also be ADTs
A tree represents relationships between objects
Hierarchy at a company
Type hierarchies in Java
Decision tree
Partial order (e.g,. prereqs at Grinnell)

Trees, abstracted
Philosophy/ Goal

Organize items in a hierarchy
Purpose / Use Cases

See above
Procedures / Methods

Terminology:

Each item in the tree has zero or more children
The "arity" of an item is the number of children

Almost every item in the tree has a parent

2

One item in the tree is designated as the root, which has no parent
The depth of an item is the length of the path from the root to that item
The height of a tree is the maximum depth of any item
Two items with the same parent are called siblings
The size of a tree is the number of items
A leaf is an item with no children.

What methods should we provide? (assume we’re trying to model hierarchies, not decision trees or partial
orders)

Observers

Tree.depth(item)
Might be a "node"
Might be a "location"
Might just be the name of a value

arity(item) - How many classes have 151 as a direct prerequisite
height() - Get the height of a tree

Implementation one: Recurse through the tree O(n)
Implementation two: Store it as a field in each node (assuming we’re using nodes)
Implementation three: Store it in the tree

leafp(item) - Is it a leaf?
size()

Implementation one: Recurse through the tree O(n)
Implementation two: Store it as a field in each node (assuming we’re using nodes)
Implementation three: Store it in the tree

int sibs(item)
How many siblings?
Or maybe an iterator
Or maybe an array
Or maybe ...
If siblings are ordered leftSib rightSib
Item parent(Item item)
sib?(Item me, Item you)
children(Item item)

Iterator?
Array

get(Item item)
Necessary if we distinguish nodes/locations from values

Iterator leaves()

Mutators

3

An array-based implementation of binary trees
Each value we store gets an index.
Store in "breadth-first" order leave blanks for missing nodes and missing children
The children of the value at position i are at ...?
The parent of the value at positin i is at ...?

Here’s a tree of the indices we’d get

 0
 / \
 1 2
 / \ / \
 3 4 5 6
 / \ / \ / \ / \
 7 8 9 10 11 12 13 14

Copyright (c) 2013 Samuel A. Rebelsky.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

4

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2013F, Class 44: Trees, Generalized
	Preliminaries
	Admin
	Questions on the exam

	Thinking about trees
	Trees, abstracted
	An array-based implementation of binary trees

