CSC207.01 2013F, Class 32: Merge Sort

Overview

- Preliminaries.
- Admin.
- A C problem
- Ushahidi and the project
- Questions on HW 7
- Questions on Exam makeup
- HW 8
- An introduction to merge sort.
- Analyzing merge sort.
- Lab.

Admin

- While you're waiting, fork and clone https://github.com/Grinnell-CSC207/sorting
- Today we will do a quick analysis of merge sort and then follow it up with some lab exercises.
- I'm moving the due time for the electronic and printed versions of the exam to $10: 30 \mathrm{pm}$ on Friday night. Put the printed version under my door.
- Upcoming extra credit opportunities:
- Study in Budapest Lunch, Today
- Learning from Alumni, Thursday: Jordan Shkolnick '11 (Microsoft)
- CS Table, Friday: Ambient Belonging
- One Grinnell Prize Event next week

A C Problem

```
char *
foo(char *t, char *s)
{
    while (*t++ = *s++)
        ;
    return t;
} // for
```


Ushahidi and the Project

- We should discuss the project and the role of Ushahidi in this class. Clearly, we were less successful at getting the materials ready than we would have liked this summer, and I was as unsuccessful at getting them ready during the semester.
- I've removed Ushahidi from HW 8.
- Project summary:
- Find a client; negotiate the design of an Ushahidi installation
- Build an Ushahidi installation for that client

O Write some custom report or tool for the client

- Do you still want to do the project? Revisit Friday.

HW 7

Due tonight
Why implement java.util.Iterator when we have cursors?
Real Java programmers build iterators for any collection class they design

```
public class MyIterator<T> implements java.util.Iterator<T> {
    // +--------+--------------------------------------------------------------------------
    // | Fields |
    // +--------+
    Node<T> pos;
    // +--------------+------------------------------------------------------------
    // | Constructors |
    // +--------------+
    // +---------+----------------------------------------------------------------
    // | Methods |
    // +---------+
    public T next() {
        // Find out what's right after pos
        // Advance the position
        // Return the value we got in step 1
    }
    public boolean hasNext() {
    }
    public void remove() {
        throw new UnsupportedOperationException();
    }
}
```

Once you've implemented iterators, folks can write

```
DoublyLinkedList dll;
for (val : dll) {
}
```

_When should I put the type variable in brackets?
Usually, whenever you are referring to a generic/parameterized class.

Not when you are using it as a type
So
public T extractValue (Node<T> node)
Also when parameterizing static methods

```
public static <T> returnType methodName(...)
```


Exam

Any hints on DNF?

Write isDNF

HW 8

- Implement five different sorting methods;
- Do other stuff

An introduction to merge sort

- Two sorting algorithms, both $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$
- Can I do better?
- Practical: Look for other algorithms
- Theoretical: Does one exist: A compare/swap sorting requires O(nlogn) steps
- There are $\mathrm{O}(\mathrm{nlogn})$ sorting algorithms based on compare/swap
- Merge sort
- Quicksort
- Heap sort
- One key approach to speeding up algorithms: Divide and conquer
- Divide the array in half
- Sort each half
- Merge the two halves:
- Create a new array
- Repeateldy grab the smallest remaining thing from each array and copy to the new arraya - $\mathrm{O}(1)$ steps

Analyzing merge sort

- How do we figure out how fast this is? Recurrence relations!
- Write a function that describes the running time of our algorithm on input of size n
- $\mathrm{t}(\mathrm{n})=\mathrm{t}(\mathrm{n} / 2)+\mathrm{t}(\mathrm{n} / 2)+\mathrm{n}$
- $\mathrm{t}(\mathrm{n})=2 * \mathrm{t}(\mathrm{n} / 2)+\mathrm{n}$
- How do we figure this out?
- Base case: $\mathfrak{t}(1)=1$
- Build up

○ $\mathrm{t}(2)=2 t(2 / 2)+2=2 \mathrm{t}(1)+2=21+2=4$
○ $t(4)=2 t(4 / 2)+4=2 t(2)+4+24+4=12$
○ $t(8)=212+8=32$
○ $t(16)=232+16=80$

- Build down

○ $\mathrm{t}(\mathrm{n})=2 t(n / 2)+n / /$ Note that $t(n / 2)=2 \mathrm{t}(\mathrm{n} / 4)+\mathrm{n} / 2$
○ $t(n)=2(2 t(n / 4)+n / 2)+n / /$ Simplify
○ $\mathrm{t}(\mathrm{n})=4 \mathrm{t}(\mathrm{n} / 4)+2 n / /$ Note that $\mathrm{t}(\mathrm{n} / 4)=2 \mathrm{t}(\mathrm{n} / 8)+\mathrm{n} / 4$
○ $\mathrm{t}(\mathrm{n})=4(2 \mathrm{t}(\mathrm{n} / 8)+\mathrm{n} / 4)+2 \mathrm{n} / /$ Simplify
○ $\mathrm{t}(\mathrm{n})=8 t(n / 8)+3 n / /$ Note that $t(n / 8)=2 \mathrm{t}(\mathrm{n} / 16)+\mathrm{n} / 8$
○ $t(n)=8(2 t(n / 16)+n / 8)+3 n / /$ Simplify
○ $t(n)=16 t(n / 16)+4 n$
○ $t(n)=\left(2^{\wedge} 4\right) t\left(n /\left(2^{\wedge} 4\right)\right)+4 n$
○ $\mathrm{t}(\mathrm{n})=\left(2^{\wedge} \mathrm{x}\right) \mathrm{t}\left(\mathrm{n} /\left(2^{\wedge} \mathrm{x}\right)\right)+\mathrm{xn}$
○ Choose k s.t. $2^{\wedge} k=n$
○ $t(n)=n t(n / n)+k n$
○ $t(n)=n t(1)+k n$
○ $\mathrm{t}(\mathrm{n})=\mathrm{n}+\mathrm{kn}$
○ If $2^{\wedge} \mathrm{k}=\mathrm{n}$, then $\mathrm{k}=\log 2(n)$
○ $t(n)=n+n * \log 2(\mathrm{n})$
O $t(n)$ is in $O(n \log n)$
*

Lab

Copyright (c) 2013 Samuel A. Rebelsky.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

