
Algorithms and OOD (CSC 207 2013F) : EBoards

CSC207.01 2013F, Class 32: Merge Sort

Overview

Preliminaries.
Admin.
A C problem
Ushahidi and the project
Questions on HW 7
Questions on Exam makeup
HW 8

An introduction to merge sort.
Analyzing merge sort.
Lab.

Admin

While you’re waiting, fork and clone https://github.com/Grinnell-CSC207/sorting
Today we will do a quick analysis of merge sort and then follow it up with some lab exercises.
I’m moving the due time for the electronic and printed versions of the exam to 10:30 pm on Friday
night. Put the printed version under my door.
Upcoming extra credit opportunities:

Study in Budapest Lunch, Today
Learning from Alumni, Thursday: Jordan Shkolnick ’11 (Microsoft)
CS Table, Friday: Ambient Belonging
One Grinnell Prize Event next week

A C Problem
char *
foo(char *t, char *s)
{
 while (*t++ = *s++)
 ;
 return t;
} // for

Ushahidi and the Project

We should discuss the project and the role of Ushahidi in this class. Clearly, we were less successful
at getting the materials ready than we would have liked this summer, and I was as unsuccessful at
getting them ready during the semester.
I’ve removed Ushahidi from HW 8.
Project summary:

1

Find a client; negotiate the design of an Ushahidi installation
Build an Ushahidi installation for that client
Write some custom report or tool for the client

Do you still want to do the project? Revisit Friday.

HW 7

Due tonight

Why implement java.util.Iterator when we have cursors?

Real Java programmers build iterators for any collection class they design

public class MyIterator<T> implements java.util.Iterator<T> {
 // +--------+--
 // | Fields |
 // +--------+

 Node<T> pos;

 // +--------------+--
 // | Constructors |
 // +--------------+

 // +---------+---
 // | Methods |
 // +---------+

 public T next() {
 // Find out what’s right after pos
 // Advance the position
 // Return the value we got in step 1
 }
 public boolean hasNext() {
 }

 public void remove() {
 throw new UnsupportedOperationException();
 }
}

Once you’ve implemented iterators, folks can write

DoublyLinkedList dll;
for (val : dll) {
}

_When should I put the type variable in brackets?

Usually, whenever you are referring to a generic/parameterized class.

2

Not when you are using it as a type

So

public T extractValue(Node<T> node)

Also when parameterizing static methods

public static <T> returnType methodName(...)

Exam

Any hints on DNF?

Write isDNF

HW 8

Implement five different sorting methods;
Do other stuff

An introduction to merge sort
Two sorting algorithms, both O(n^2)
Can I do better?

Practical: Look for other algorithms
Theoretical: Does one exist: A compare/swap sorting requires O(nlogn) steps

There are O(nlogn) sorting algorithms based on compare/swap
Merge sort
Quicksort
Heap sort

One key approach to speeding up algorithms: Divide and conquer
Divide the array in half
Sort each half
Merge the two halves:

Create a new array
Repeateldy grab the smallest remaining thing from each array and copy to the new arraya - O(1)
steps

Analyzing merge sort
How do we figure out how fast this is? Recurrence relations!
Write a function that describes the running time of our algorithm on input of size n
t(n) = t(n/2) + t(n/2) + n
t(n) = 2*t(n/2) + n

3

How do we figure this out?
Base case: t(1) = 1
Build up

t(2) = 2t(2/2) + 2 = 2t(1) + 2 = 21 + 2 = 4
t(4) = 2t(4/2) + 4 = 2t(2) + 4 + 24 + 4 = 12
t(8) = 212 + 8 = 32
t(16) = 232 + 16 = 80

Build down
t(n) = 2t(n/2) + n // Note that t(n/2) = 2t(n/4) + n/2
t(n) = 2(2t(n/4) + n/2) + n // Simplify
t(n) = 4t(n/4) + 2n // Note that t(n/4) = 2t(n/8) + n/4
t(n) = 4(2t(n/8) + n/4) + 2n // Simplify
t(n) = 8t(n/8) + 3n // Note that t(n/8) = 2t(n/16) + n/8
t(n) = 8(2t(n/16) + n/8) + 3n // Simplify
t(n) = 16t(n/16) + 4n
t(n) = (2^4)t(n/(2^4)) + 4n
t(n) = (2^x)t(n/(2^x)) + xn
Choose k s.t. 2^k = n
t(n) = nt(n/n) + kn
t(n) = nt(1) + kn
t(n) = n + kn
If 2^k = n, then k = log2(n)
t(n) = n + n*log2(n)
t(n) is in O(nlogn)

*

Lab
Copyright (c) 2013 Samuel A. Rebelsky.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

4

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2013F, Class 32: Merge Sort
	
	A C Problem
	Ushahidi and the Project
	HW 7
	Exam
	HW 8

	An introduction to merge sort
	Analyzing merge sort
	Lab

