
Algorithms and OOD (CSC 207 2013F) : EBoards

CSC207.01 2013F, Class 31: Quadratic Sorts

Overview

Preliminaries.
Admin.
Questions on HW7.
Questions on Exam.

Our sorting package.
Testing sorts.
Insertion sort.
Selection sort.
Lab.

Admin

AA wants to know if anyone takes notes: MH
Today we will do a few group exercises and then a few lab exercises.
Upcoming extra credit opportunities:

Tonight’s Harry Hopkins talk, tonight at 7pm
Study in Budapest Lunch, Wednesday
Learning from Alumni, Thursday: Jordan Shkolnick ’11 (Microsoft)
CS Table, Friday: Ambient Belonging
One Grinnell Prize Event next week

Questions on HW7

Where do I find Node?

In DoublyLinkedList.java, because it’s only needed by that class.

What does search do?

Moves forward in the list until it finds a value for which the predicate holds. If it doesn’t find such a
value, returns false and doesn’t move.

_Can I rewrite the Cursor interface so that it’s Cursor<T>?

Yes.

Can we work in groups of size 3?

1

Yes.

Questions on Exam

How should we submit?

Electronic version as attached tarball/zip

Our sorting package
Two versions of sort, one in-place, one out-of-place
It’s easy to turn an in-place algorithm into an out-of-place sorting algorithm

Clone the array
Sort the new array in place
Return it

It’s easy to turn an out-of-place sorting algorithm into somethiung that simulates an in-place sorting
algorithm (although it uses extra space)

Get the sorted version
Copy the values back

You can see these strategies in practice in SorterBridge.java
If you extend SorterBridge, and implement one of the two sorts, the other gets implemented
"automagically"

Testing sorts
Good testing involves automated generation of lots of cases
And close attention to postconditions
Randomized testing:

Generate a lot of random arrays
Sort them
Check postconditions

It’s a permutation of the original - EXPENSIVE, PITN
They’re in the correct order - EASY

Can we avoid the "is it a permutation" check?
Use sequential integers
Start with a sorted "random" array. Then permute it. Then sort it.
Then cmopare.

More systematic: Geneate every permutation of an array, sort it, then compare.
Think about this question for Wednesday
Goal: Do it "in place" - make a permutation, clone, sort, compare, go on to the next permutation

2

Insertion sort
Divide array into sorted (nothing) and unsorted (everything)
Repeatedly insert the thing at position i into the sorted stuff at positions [0..i)
Analysis: How long does this take:

O(N) - Do something for each element. But each of those is not constant.
O(N!) - Each insertion is O(N). O(N) of those. So O(N^2)
1 + 2 + 3 + 4 + ... is also O(N^2)

Sam’s old bad analysis:
At each step, we do binary search to find the right place
And it only takes one step to insert once you know the right place

Whoops! Insert is O(N), even if you know the place
So N*(LogN+1) steps

Selection sort
Divide array into sorted (nothing) and unsorted (everything)
Repeatedly swap the smallest remaining element into the end of the sorted section
Running time

O(N) find smallest and swaps
Each find smallest is O(N)
So O(N^2)

But only O(N) swaps. Since writing memory is usually slow, cutting from O(N^2) to O(N) is good.

Generate all Permutations
Goal ALL permutations
Model: Some sort of loop or recursion that repeatedly

Makes a new permutation
Clones it
Sorts the new permutations
Does something (for testing, compare to original; for expt, print)

You effectively have to make a loop for every position. How can we do that?
If we could write the nest loop

 for (int i = 0; i < vals.length; i++) {
 // put the ith value in position (vals.length-1)
 // nested loops for positions [1 .. vals.length-2]
 } // for

So use recursion

3

recurseOver(pos)
 for (int i = 0; i < vals.length; i++) {
 // put the ith value in position pos
 // recurseOver(pos-1)

 } // for

Lab
Clone https://github.com/Grinnell-CSC207/sorting

Read code

Finish implementing selection sort

Copyright (c) 2013 Samuel A. Rebelsky. This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/
or send a letter to Creative Commons, 543 Howard Street, 5th Floor,

San Francisco, California, 94105, USA.

4

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2013F, Class 31: Quadratic Sorts
	
	Questions on HW7
	Questions on Exam

	Our sorting package
	Testing sorts
	Insertion sort
	Selection sort
	Generate all Permutations
	Lab

