
Algorithms and OOD (CSC 207 2013F) : EBoards 

CSC207.01 2013F, Class 29: Doubly-Linked Lists

Overview

Admin. 
Review of singly-linked lists. 
Insertion and deletion in singly-linked lists. 
A trick for simplifying insertion and deletion. 
Doubly-linked lists. 
Circularly-linked lists.

Admin

Assignment 7 remains "Implement doubly linked lists and then add Ushahidi incidents." 
We will continue the work a little / talk a little approach. 
Upcoming extra credit opportunities 

CS Table: Cool readings on building software 
Others?

Have a good break!

Review of singly-linked lists
Basic idea: Combine nodes that have 
We’re going to wrap these nodes into something that implements our list interface 

Fields in LinkedList 
How to prepend and append 
How to build an iterator

Insertion and deletion in singly-linked lists
Prepend and APpend are our first examples 
Question: 

What fields? You decide. 
What do nodes look like class Node { T val; Node next; public Node(val, next) { this.val = val;
this.next = next; } } // class Node 
What are the method signatures? void prepend(T val) throws Exception; void append(T val)
throws Exception;

Useful fields 
front, the front of the list

1



Prepend

public void prepend(T val) {
    // Create a new node, with T as a val and front as next
   Node<T> newfront = new Node(T, this.front);
   this.front = newfront;
} // prepend(T)

public void prepend(T val) {
    // Create a new node, with T as a val and front as next
   this.front = new Node(T, this.front);
} // prepend(T)

Two strategies:

Keep a field for the end of the list 
Iterate through to the end of the list 
A field is the winner

Code, revisited

Node<T> front;
Node<T> back;

public void prepend(T val) {
    // Create a new node, with T as a val and front as next
   this.front = new Node(T, this.front);
} // prepend(T)

public void append(T val) {
    // Create a new node with val and no successor
    // Update the former back of the list to make this new node the next node
    this.back.next =  new Node(T, null);
    // Update our notion of the back of the list
    this.back = this.back.next;
} // append(T)

What do we initialize front and back to for an empty list?

null!

public void prepend(T val) { // Create a new node, with T as a val and front as next this.front = new
Node(T, this.front); // Special case: Empty list if (this.back == null) this.back = this.front; } // 
prepend(T)

public void append(T val) { // Deal with empty list if (this.back == null) { this.back = new Node(T,
null); this.front = this.back; } else { // Create a new node with val and no successor // Update the
former back of the list to make this new node the next node this.back.next = new Node(T, null); //
Update our notion of the back of the list this.back = this.back.next; } } // append(T)

2



Worrying about special cases in linked lists is really important! (Was it empty? for insert; Will it be
empty? for delete)

A trick for simplifying insertion and deletion
On to insert and delete with a cursor

public class LinkedListCursor<T> implements Cursor {

} // LinkedListCursor<T>

Add after current element is easy, delete current element is hard

So have the cursor point to the previous element

Deletion

cursor.prev.next = cursor.prev.next.next;

A problem: How do we delete the first element, and where is cursor.prev when we start?

Doubly-linked lists
Twice the links! Twice the fun! Twice the potential for errors.

Circularly-linked lists
Dummy node with link to front and back

Copyright (c) 2013 Samuel A. Rebelsky. 

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

3

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2013F, Class 29: Doubly-Linked Lists
	Review of singly-linked lists
	Insertion and deletion in singly-linked lists
	A trick for simplifying insertion and deletion
	Doubly-linked lists
	Circularly-linked lists


