Algorithms and OOD (CSC 207 2013F) : EBoards

CSC207.01 2013F, Class 29: Doubly-Linked Lists

Overview

Admin.

Review of singly-linked lists.

Insertion and deletion in singly-linked lists.
A trick for simplifying insertion and deletion.
Doubly-linked lists.

Circularly-linked lists.

Admin

Assignment 7 remains "Implement doubly linked lists and then add Ushahidi incidents."
We will continue the work alittle / talk alittle approach.
Upcoming extra credit opportunities
O CSTable: Cool readings on building software
O Others?
Have agood break!

Review of singly-linked lists

® Basic idea: Combine nodes that have

® \We're going to wrap these nodes into something that implements our list interface
O Fieldsin LinkedList
O How to prepend and append
O How to build an iterator

Insertion and deletion in singly-linked lists

® Prepend and APpend are our first examples
® Question:
O What fields? Y ou decide.
O What do nodes look like class Node { T va; Node next; public Node(val, next) { thisval = val;
this.next = next; } } // class Node
O What are the method signatures? void prepend(T val) throws Exception; void append(T val)
throws Exception;
e Useful fields
O front, the front of thelist

Prepend

public void prepend(T val) {
// Create a new node, with T as a val and front as next
Node<T> newfront = new Node(T, this.front);
this.front = newfront;

} I/ prepend(T)

public void prepend(T val) {
/l Create a new node, with T as a val and front as next
this.front = new Node(T, this.front);

} I/ prepend(T)

Two strategies:

o Keep afield for the end of thelist
® |terate through to the end of the list
e A field isthe winner

Code, revisited

Node<T> front;
Node<T> back;

public void prepend(T val) {
// Create a new node, with T as a val and front as next
this.front = new Node(T, this.front);

} I/ prepend(T)

public void append(T val) {
/1l Create a new node with val and no successor
/1 Update the former back of the list to make this new node the next node
this. back. next = new Node(T, null);
/1 Update our notion of the back of the |ist
this. back = this.back. next;
} /1 append(T)

What do we initialize front and back to for an empty list?
e null!

public void prepend(T val) { // Create a new node, with T as aval and front as next this.front = new
Node(T, this.front); // Specia case: Empty list if (thisback == null) thisback = thisfront; } //
prepend(T)

public void append(T val) { // Deal with empty list if (this.back == null) { this.back = new Node(T,
null); this.front = this.back; } else { // Create a new node with val and no successor // Update the
former back of the list to make this new node the next node this.back.next = new Node(T, null); //
Update our notion of the back of the list this.back = this.back.next; } } // append(T)

Worrying about specia cases in linked lists is redly important! (Was it empty? for insert; Will it be
empty? for delete)
A trick for ssimplifying insertion and deletion

On to insert and delete with a cursor
public class LinkedListCursor<T> inplenments Cursor {

} /1 LinkedLi st Cursor<T>
Add after current element is easy, delete current element is hard
® S0 have the cursor point to the previous element

Deletion

cursor. prev. next = cursor.prev.next.next;

A problem: How do we delete the first element, and where is cursor.prev when we start?

Doubly-linked lists

Twicethelinks! Twicethe fun! Twice the potential for errors.

Circularly-linked lists

Dummy node with link to front and back

Copyright (c) 2013 Samuel A. Rebelsky.

Thiswork is licensed under a|Creative Commons Attribution 3.0 Unported Licensd To view acopy of this

license, visithttp://creati vecommpns. org/ | i censes/ by/ 3. 0/]|or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2013F, Class 29: Doubly-Linked Lists
	Review of singly-linked lists
	Insertion and deletion in singly-linked lists
	A trick for simplifying insertion and deletion
	Doubly-linked lists
	Circularly-linked lists

