
Algorithms and OOD (CSC 207 2013F) : EBoards 

CSC207.01 2013F, Class 28: Linked Lists in Java

Overview

Admin. 
Leftover topics. 
Java iterators. 
Linked lists. 
Implementation details.

Admin

No readings for the rest of the week. Keep Heck Week sane! 
Assignment 7 available in draft form. Keep Heck Week insane! 
We will probably continue the work a little / talk a little approach, although I’d like to hear your
opinions on how it went. 
Upcoming extra credit opportunities 

Learning from Alumni: Eryn O’Neil ’09 
CS Extras: Max Mindock 
CS Table: TBD 
Others?

Other things 
Kington convo today

Leftover topics
When we advanced beyond the end of the list and then inserted, we got some very strange output.
Why? 

We have three important fields: 
list.values 
list.size 
iterator.pos

When we advance too far, we are incrementing pos 
When we insert, we insert at the current pos (beyond the end) and then increment size 
If we’ve advanced twice, there’s a "hole" in the array

Intuitively, deletion and insertion can screw up other iterators. How should we handle this? 
E.g., it1 = stuff.front(); it2 = stuff.front(); s1 = stuff.get(it1); // Code that does not do anything to
it1 s2 = stuff.get(it1); // Can we say anything about the relationship 

What code in the middle might make s1 != s2 
stuff.delete(it2); 
stuff.insert("hello", it2); 

1



stuff.prepend("ouch");
One solution: Every time you insert, delete, and otherwise modify, you can update all the
iterators 
A less painful solution: Postcondition: "All other iterators are now invalid" 
An alternate strategy: Store the value in the iterator 
Then you get strange things like s1 = stuff.get(it1); stuff.contains(s1) => FALSE

Is this iterator valid? 
Add a "number of mutations" counter to the list. If the number of mutations now is the same as
when the iterator was created, the iterator is still valid. 
If we don’t want to invalidate the current iterator, we have to update its mutation count, too.

Many of our procedures have the precondition that the iterator belongs to the list. How do we verify
that precondition?

Java iterators
Why see what the folks at Sunacle did? 

Juxtaposing different designs can be useful - Help us think in new ways 
We can learn from smart people 
There may be aspects of Java lists that clients will expect of your lists (or other data structures) 
And those can be incorporated in the languag ein diffeferent ways

If you class implements Iterable, then you can write for (var : IterableObject) {
doSomethingWith(var); } 

And Java expands it to Iterator it = IterableObject.iterator(); while (it.hasNext()) { var =
it.next(); doSomethingWith(Var); }

Linked lists
Deficiency in array-based lists: Adding is often O(N) 
A different approach makes adding O(1) 
Idea: Linked nodes: Value plus link to next element 
Assume that a cursor is just a link to a node (but you can change that) 
Insertion: 

Create a new node 
Link that new node to our successor 
Link from current node to new node 
Constant time

Delete next element 
Make the next pointer the next of the next

Delete current element? 
Nodes have two pointers, rather than one - PITN 
Start at the beginning and find the previous element - O(N) 
Shove a "deleted" in the list, and the next time you iterate, delete the element 
Some other PITNs 

2



Copy data from next node and delete the next node. (Potential drawbacks) 
Cursors store links to current and previous element

Insert at front? 
Insert at end?

Implementation details
Forthcoming

Copyright (c) 2013 Samuel A. Rebelsky. 

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

3

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2013F, Class 28: Linked Lists in Java
	Leftover topics
	Java iterators
	Linked lists
	Implementation details


