
Algorithms and OOD (CSC 207 2013F) : EBoards

CSC207.01 2013F, Class 25: The Collections API

Overview

Preliminaries.
Admin.
About the exam.

Making our list interface generic.
Beyond our own design: The collections API.

Admin

No readings for Monday. Work on the exam!
Upcoming extra credit opportunities

Codebreaker Friday night at 7pm in Harris.
Codebreaker discussion after the movie.

Drake Library book sale this weekend
I already have corrections to the exam, but have not made them. Keep sending them in.
I should have the repo up soon.
Cool booksale this weekend.
10/10 is this weekend. Please behave responsibly. Please take care of yourself and each other.

And lock your doors
And help the people on Cowles and Younker 1st recover

EC for going to Wartburg this weekend and cheering on Xcountry

Exam Questions

What’s the name of the class that sorts for DNF (DNF.dnf).
Can DNF.dnf throw exceptions? No. If you fail to meet preconditions, it can do whatever it wants.
Do we have to deal with incorrect inputs for DNF.dnf? No. You just want to make sure that it works
correctly with correct inputs.
For problems 4 and 5, do we just have to implement the STUBs, or add procedures.

Just finish the STUBs.
Can you explain a bit more about what you want for loop invariants?

A loop invariant is a condition/assesrtion that, if holds at beginning of the loop, also holds at the
end.
Specific enough that it helps you understand the problem.
General enough that you can guarantee that it holds.
Note: The invariant can be temporarily invalidated in the middle
For this problem, the only things we know about are:

The total number of beans in the jar
The number of dark beans

1

The number of light beans

Making our list interface generic
How do we generalize the following so that it works for Integers or UshahidiIncidents, or
BigDecimals, or whatever?
Strategy one (early Java): Use Objects

Yay polymorphism! We can put Strings or UshahidiIncidents or ... into the list.
And our lists can be heterogeneous - We can have an Integer and a String

But heterogeneity can be problematic. How do you map or sort or a heterogeneous list?
Java philosophy: Catch possible type errors at compile time rather than run time Scheme: (define
whatever (x) (* x x)) ... (define morestuff (fun y) (whatever (fun y))) Java wants to know before
you run the program whether you’ll have type errors.

Java redesign: Allow "generic" structures that still do some kind of type checking, so that we can
enforce type safety.

Soln’: Parameterize a class definition ("Generics") class ListOf we can plug in type variables, much
like we plug in variables elsewhere

ListOf grades; ListOf csc207; ListOf randomCrapInSamsOffice; and ...

/**

Lists have cursors/iterators, which fall between elements (or before

the first element or after the last element). */ public interface ListOf { // Adding Elements

/**

Insert an element at the location of the cursor (between two
elements). *
@pre
lit must be associated with the list and in the list. *
@throws Exception
If the precondition is not met.
@throws Exception
If there is no memory to expand the list. *
@post
The previous elemetn to the iterator remains the same
str is immediately after the iterator
The element that previously followed the iterator follows str
And writing postconditions is a PITN */ public void insert(Type str, ListIterator lit) throws
Exception;

2

/**

Add an element to the end of the list. (Creates a one-element
list if the list is empty.) *
@throws Exception
If there is no memory to expand the list. */ public void append(Type str) throws Exception;

/**

Add an element to the front of the list. (Creates a one-element
list if the list is empty.) *
@throws Exception
If there is no memory to expand the list. */ public void prepend(Type str) throws
Exception;

// Removing Elements /**

Delete the element immediately after the iterator. *
@post
The remaining elements retain their order.
@post
The iterator is at the position
The successor of the element immediately before the iterator
is the successor of the now-deleted element. */ public void delete(ListIterator lit);

// Iterating Lists /**

Get an iterator right before the front of the list. *
@throws Exception
If the list is empty. */ public ListIterator front() throws Exception;

/**

Advance to the next position between elements *
@pre
The list has a next element.
@throws Exception
If there is no next element. */ public void advance(ListIterator it) throws Exception;

/**

Get the element immediately following this iterator. *
@pre
it is valid and associated with this list.
@throws Exception
If the preconditions are not met. */ public Type get(ListIterator it) throws Exception;

3

/**

Get the element immediately before this iterator. */ public Type getPrev(ListIterator it)
throws Exception;

/**

Determine if it’s safe to advance to the next position. *
@pre
pos is valid and associated with the list. */ public boolean hasNext(ListIterator it);

// Other operations

/**

Swap the elements at the positions the corresopnd to it1 and it2. *
@pre
Both it1 and it2 are valid and associated with this list.
v1 = get(it1), v2 = get(it2)
@post
it1 and it2 are unchanged.
v1 = get(it2), v2 = get(it1) */ public void swap(ListIterator it1, ListIterator it2);

/**

Search for a value, moving the iterator to that value. *
@return true, if the value was found
@return false, if the value was not found *
@post If the value is not found, the iterator has not moved.
@post IF the value is found, get(it) is value */ public boolean search(ListIterator it, Type
val);

/**

Grab a sublist. (Detailed discussion not included.) *
@pre
Valid iterators.
start precedes end.
@throws Exception
If the iterators are invalid. */ public ListOf subList(ListIterator start, ListIterator end)
throws Exception;

/**

Determine if one iterator precedes another iterator. */ public boolean precedes(ListIterator
it1, ListIterator it2); } // interface ListOf

4

Continuing the example

 ListOf<Integer> grades;
 ListOf<Student> csc207;
 ListOf<Object> randomCrapInSamsOffice;
 ...
 grades.prepend(5);
 csc207.prepend(5); // COMPILATION ERROR! 5 is not of the appropriate type
 Professor SamR = ...;
 csc207.prepend(SamR); // COMPILATION ERROR! SamR is not a student

 ListOf<Person> grinnellcs;
 grinnellcs.prepend(SamR); // OKAY, Profesor is a subtype of person, whether or
 // not most students believe that claim
 grinnellcs.prepend(new Student("A", "A", "A");

Beyond our own design: The collections API

At some point, the designers of Java said "Everyone is going to build these ADTs, so let’s just put
them in the language".
Benefits

Standardized: Easier for someone joining a project to understand the interface
Programmers become more efficient. (Of course, good programmers already have their libraries
that the plug in to whatever project the use.)
Subclassing might allow you to customize.
Likely to be well tested and implemented.

Disadvantages
You don’t know what’s going on behind the scenes - efficiency issues
You might not understand the documentation (because you and the documenters think
differently)
If you only use prebuilt ADTs and switch to a new language that doesn’t, you’ll be clueless as to
how to design your own.
Sometimes you will have to change your client code to match the standard ADT.

Copyright (c) 2013 Samuel A. Rebelsky.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

5

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2013F, Class 25: The Collections API
	Making our list interface generic

