
Algorithms and OOD (CSC 207 2013F) : EBoards

CSC207.01 2013F, Class 24: Generics

Overview

Preliminaries.
Admin.
Questions on exam 1.

ADT Design, considered.
A list ADT, continued.
Making the list "generic".

Admin

Readings for Friday
http://docs.oracle.com/javase/7/docs/technotes/guides/collections/overview.html
http://docs.oracle.com/javase/tutorial/collections/intro/index.html
http://docs.oracle.com/javase/tutorial/collections/interfaces/index.html

Upcoming extra credit opportunities
CS Extras, Thursday: Grad School
Learning from Aluni, Thursday: Tony Stubblebine ’00 - CEO at Lift
Codebreaker Friday night at 7pm in Harris.
Codebreaker discussion after the movie.
Wit starts Thursday
Debate about need-blind admissions tonight

10/10 is this weekend. Please behave responsibly. Please take care of yourself and each other.
Sam will only be availble intermittently via email this weekend.

Exam 1

What will go in a typical class that implements the Predicate interface?
the test method
maybe some public constructors
maybe some other private/package/protected methods
maybe some private/package/protected fields

You can provide corrections to the exam starting Thursday at noon.

Our List ADT
public interface ListOfStrings {
 // Constructors

 // Adding Elements

1

 // Removing Elements

 // Iterating Lists
 /**
 * Get the position of the front of the list.
 *
 * @throws Exception
 * If the list is empty.
 */
 public ListPosition front() throws Exception;

 /**
 * Advance to the next element.
 *
 * @pre
 * The list has a next element.
 * @throws Exception
 * If there is no next element.
 */
 public void advance(ListPosition pos) throws Exception;

 /**
 * Get the element at a particular position.
 *
 * @pre
 * pos is valid and associated with this list.
 * @throws Exception
 * If the preconditions are not met.
 */
 public String get(ListPosition pos) throws Exception;

 /**
 * Determine if it’s safe to advance to the next position.
 *
 * @pre
 * pos is valid and associated with the list.
 */
 public boolean hasNext(ListPosition pos);

 // Other operations

 /**
 * Swap the elements at positions p1 and p2.
 *
 * @pre
 * Both p1 and p2 are valid and associated with this list.
 * v1 = get(p1), v2 = get(p2)
 * @post
 * p1 and p2 are unchanged.
 * v1 = get(p2), v2 = get(p1).
 */
 public void swap(ListPosition p1, ListPosition p2);

} // interface ListOfStrings

2

ADT Design, considered
As you’ve already started to see, there are a huge number of choices that you make in ADT design, some
subtle, some not so subtle.

How do you figure out if you’ve made the right decision? Usually, you write client code (or, better
yet, have other people write client code).
And there are often multiple correct decisions.
Sometimes naming can make a difference. What you think is a clear name, someone else might
interpret differently (e.g., our nextValue)
Here are some related names. Does it matter which we use?

Position
Cursor
Iterator

Here’s a design decision we didn’t yet consider: Are positions static (e.g., once you have a position
it’s always at the same place) or mutable (e.g., you move through the list).

A list ADT, continued
/**
 * Lists have cursors/iterators, which fall between elements (or before
 * the first element or after the last element).
 */
public interface ListOfStrings {
 // Adding Elements

 /**
 * Insert an element at the location of the cursor (between two
 * elements).
 *
 * @pre
 * lit must be associated with the list and in the list.
 *
 * @throws Exception
 * If the precondition is not met.
 * @throws Exception
 * If there is no memory to expand the list.
 *
 * @post
 * The previous elemetn to the iterator remains the same
 * str is immediately after the iterator
 * The element that previously followed the iterator follows str
 * And writing postconditions is a PITN
 */
 public void insert(String str, ListIterator lit) throws Exception;

 /**
 * Add an element to the end of the list. (Creates a one-element
 * list if the list is empty.)
 *
 * @throws Exception
 * If there is no memory to expand the list.

3

 */
 public void append(String str) throws Exception;

 /**
 * Add an element to the front of the list. (Creates a one-element
 * list if the list is empty.)
 *
 * @throws Exception
 * If there is no memory to expand the list.
 */
 public void prepend(String str) throws Exception;

 // Removing Elements
 /**
 * Delete the element immediately after the iterator.
 *
 * @post
 * The remaining elements retain their order.
 * @post
 * The iterator is at the position
 * The successor of the element immediately before the iterator
 * is the successor of the now-deleted element.
 */
 public void delete(ListIterator lit);

 // Iterating Lists
 /**
 * Get an iterator right before the front of the list.
 *
 * @throws Exception
 * If the list is empty.
 */
 public ListIterator front() throws Exception;

 /**
 * Advance to the next position between elements
 *
 * @pre
 * The list has a next element.
 * @throws Exception
 * If there is no next element.
 */
 public void advance(ListIterator it) throws Exception;

 /**
 * Get the element immediately following this iterator.
 *
 * @pre
 * it is valid and associated with this list.
 * @throws Exception
 * If the preconditions are not met.
 */
 public String get(ListIterator it) throws Exception;

 /**
 * Get the element immediately before this iterator.
 */

4

 public String getPrev(ListIterator it) throws Exception;

 /**
 * Determine if it’s safe to advance to the next position.
 *
 * @pre
 * pos is valid and associated with the list.
 */
 public boolean hasNext(ListIterator it);

 // Other operations

 /**
 * Swap the elements at the positions the corresopnd to it1 and it2.
 *
 * @pre
 * Both it1 and it2 are valid and associated with this list.
 * v1 = get(it1), v2 = get(it2)
 * @post
 * it1 and it2 are unchanged.
 * v1 = get(it2), v2 = get(it1)
 */
 public void swap(ListIterator it1, ListIterator it2);

 /**
 * Search for a value, moving the iterator to that value.
 *
 * @return true, if the value was found
 * @return false, if the value was not found
 *
 * @post If the value is not found, the iterator has not moved.
 * @post IF the value is found, get(it) is value
 */
 public boolean search(ListIterator it, String val);

 /**
 * Grab a sublist. (Detailed discussion not included.)
 *
 * @pre
 * Valid iterators.
 * start precedes end.
 * @throws Exception
 * If the iterators are invalid.
 */
 public ListOfStrings subList(ListIterator start, ListIterator end)
 throws Exception;

 /**
 * Determine if one iterator precedes another iterator.
 */
 public boolean precedes(ListIterator it1, ListIterator it2);
} // interface ListOfStrings

5

Making the list generic
Copyright (c) 2013 Samuel A. Rebelsky.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

6

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2013F, Class 24: Generics
	Our List ADT
	ADT Design, considered
	A list ADT, continued
	Making the list generic

