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CSC207.01 2013F, Class 23: A List Interface, Continued

Overview

Preliminaries. 
Admin. 
About exam 1.

A list ADT, continued.

Admin

Lea says that you all have difficulty reading. 
Read the documentation for java.util.AbstractList and java.util.ListIterator for tomorrow’s class. 
Also read [Lists with Current Considered Harmful]
(http://csis.pace.edu/~bergin/papers/ListsWithCurrent.html) 
The titles of individual classes may not follow the actual content - Our goal is to think about design. 
Exam 1 is ready, although in draft form. 
Upcoming extra credit opportunities 

Road to Rio, Tuesday 7:00 p.m., Natatorium. 
CS Extras, Thursday: Grad School 
Learning from Aluni, Thursday: Tony Stubblebine ’00 - CEO at Lift 
Codebreaker Friday night at 7pm in Harris. 
CS Table Friday: Hopper

Exam 1

Standard Sam policies (although mental health option is gone; we can talk about that) 
Five questions. 
Question 1: Predicates 

Functions are not first class objects in Java (yet) 
So we simulate with objects with one method interface Predicate { public boolean test(T val) } 
In Scheme, (define isEven (lambda (x) (= (mod x 2) 0))) 
In Java class Even implements Predicate { public boolean test(Integer i) { ... } } 
Using this predicate Predicate even = new Even(); if (even.test(42)) { pen.println("The answer is
even"); } pen.println("even.test(i): " + even.test(i));q if (even.test(expt)) { return square(pow(val,
expt/2)); } 

Building new predicates from old 
In Scheme: (define negate (lambda (pred) (lambda (x) (not (pred x))))) (define negate
(lambda (pred) (o not pred))) (define negate (l-s o not))
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A list ADT, continued
Create 
Add/insert 
Delete 
Iterate - look at the values one by one 
Swap 

Big-picture things - sort, shuffle, reverse, etc.

public interface ListOfStrings { // Constructors

// Adders

// Deleters

// Iterate stuff - Want to go through the list
/**
 * Create a new position at the beginning of the list
 */
ListPosition front();

/**
 * Given a current location in the list, get the value at the 
 * position.
 *
 * @pre
 *    We must have an element at the current position.
 * @pre
 *    ListPostion must be associated with this list.
 */
String get(ListPosition p);

/**
 * Advance to the next position.
 * @pre
 *    hasNext(p)
 */
void advance(ListPosition p);

/**
 * Determine if a ListPostion has a next element.
 *
 * @pre
 *    ListPostion must be associated with this list.
 */
boolean hasElement(ListPosition p);
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/**
 * Determine if one position precedes another.  MAXIMALIST
 */

boolean precedes(ListPosition p1, ListPosition p2);

// Swap
/**
 * Swap two elements of the list.
 *
 * @pre
 *   p1 and p2 are associated with the list
 *   hasElement(p1), hasElement(p2)
 * @post
 *   The values at the positions
 */
public void swap(ListPostition p1, ListPosition p2);

} // interface ListOfStrings

Make the list generic

(Maybe) some notes on implementation
Copyright (c) 2013 Samuel A. Rebelsky. 

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.
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