
Algorithms and OOD (CSC 207 2013F) : EBoards

CSC207.01 2013F, Class 23: A List Interface, Continued

Overview

Preliminaries.
Admin.
About exam 1.

A list ADT, continued.

Admin

Lea says that you all have difficulty reading.
Read the documentation for java.util.AbstractList and java.util.ListIterator for tomorrow’s class.
Also read [Lists with Current Considered Harmful]
(http://csis.pace.edu/~bergin/papers/ListsWithCurrent.html)
The titles of individual classes may not follow the actual content - Our goal is to think about design.
Exam 1 is ready, although in draft form.
Upcoming extra credit opportunities

Road to Rio, Tuesday 7:00 p.m., Natatorium.
CS Extras, Thursday: Grad School
Learning from Aluni, Thursday: Tony Stubblebine ’00 - CEO at Lift
Codebreaker Friday night at 7pm in Harris.
CS Table Friday: Hopper

Exam 1

Standard Sam policies (although mental health option is gone; we can talk about that)
Five questions.
Question 1: Predicates

Functions are not first class objects in Java (yet)
So we simulate with objects with one method interface Predicate { public boolean test(T val) }
In Scheme, (define isEven (lambda (x) (= (mod x 2) 0)))
In Java class Even implements Predicate { public boolean test(Integer i) { ... } }
Using this predicate Predicate even = new Even(); if (even.test(42)) { pen.println("The answer is
even"); } pen.println("even.test(i): " + even.test(i));q if (even.test(expt)) { return square(pow(val,
expt/2)); }

Building new predicates from old
In Scheme: (define negate (lambda (pred) (lambda (x) (not (pred x))))) (define negate
(lambda (pred) (o not pred))) (define negate (l-s o not))

1

A list ADT, continued
Create
Add/insert
Delete
Iterate - look at the values one by one
Swap

Big-picture things - sort, shuffle, reverse, etc.

public interface ListOfStrings { // Constructors

// Adders

// Deleters

// Iterate stuff - Want to go through the list
/**
 * Create a new position at the beginning of the list
 */
ListPosition front();

/**
 * Given a current location in the list, get the value at the
 * position.
 *
 * @pre
 * We must have an element at the current position.
 * @pre
 * ListPostion must be associated with this list.
 */
String get(ListPosition p);

/**
 * Advance to the next position.
 * @pre
 * hasNext(p)
 */
void advance(ListPosition p);

/**
 * Determine if a ListPostion has a next element.
 *
 * @pre
 * ListPostion must be associated with this list.
 */
boolean hasElement(ListPosition p);

2

/**
 * Determine if one position precedes another. MAXIMALIST
 */

boolean precedes(ListPosition p1, ListPosition p2);

// Swap
/**
 * Swap two elements of the list.
 *
 * @pre
 * p1 and p2 are associated with the list
 * hasElement(p1), hasElement(p2)
 * @post
 * The values at the positions
 */
public void swap(ListPostition p1, ListPosition p2);

} // interface ListOfStrings

Make the list generic

(Maybe) some notes on implementation
Copyright (c) 2013 Samuel A. Rebelsky.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

3

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2013F, Class 23: A List Interface, Continued
	A list ADT, continued
	Make the list generic
	(Maybe) some notes on implementation

