
Algorithms and OOD (CSC 207 2013F) : EBoards 

CSC207.01 2013F, Class 22: OOD in Practice: Designing
a List Interface

Overview

Preliminaries. 
Admin. 
Amazon code ninja challenge.

The design of ADTs, revisited. 
Exercise: Designing a list ADT. 
Quick notes on implementation.

Admin

I’ve brought some swag back from GHC. We’ll try to find an equitable way for each of you who did
not attend GHC to get an item. 
I finished the Amazon Code Ninja challenge that I tried faster than anyone around me. I’ve tried to
replicate it and I’ll give you a few minutes to try it. 

No, you may not compile and run the code.
Just so you know, most of this week will be dedicated to in-class design problems, problems that we
will do as a group. (Although maybe sometimes in small groups.) 
I’m booked solid doing a SHACS review all day today and part of tomorrow. 
HW6 is now reduced to the Dutch National Flag problem. 
Exam 1 should be distributed in rough form on Tuesday. 
Upcoming extra credit opportunities 

Road to Rio, Tuesday 7:00 p.m., Natatorium. 
CS Extras, Thursday: Graduate School in CS 
Learning from Alumni, Thursday: Tony Stubblebine ’00 - CEO at Lift 
Codebreaker Friday night @ 7pm. 
???

Amazon Code Ninja Challenge

There were a few. This is the one I attempted (and solved faster than anyone around me). 
Come up with an answer (without using the compiler) and show it to me.

The design of ADTs, revisited
Think about the what, not the how 
Three or so steps in designing an ADT 

Overall goal or philosophy 

1



Arrays: Collections of data, indexed by sequential integers 
Fixed size vs. Dynamic 
Starting at 0 or startnig where you want

Applications/client code (use case) 
Think about what procedures the ADT needs

Once you’ve designed the ADT, you can think about implementation 
Layout in memory 

Big chunk of data 
Small chunks of data with interlinked pointers

Fields 
Implement methods 
Find running time

Exercise: Designing a list ADT
You’ve seen lists multiple times 

Scheme lists in 151 and 208. 
Linked lists in 161. 
UshahidiLists in 207. 
Everyday written lists outside of CS classes 
ArrayLists in Java

What’s the big picture philosophy a list? 
Collections of data 
Ordered - one comes after another comes after another 

All but one element has a successor 
All but one element has a predecessor

Resizable / modifiable 
Insert in arbitrary places 
Intended for sequential access

Things not necessarily in lists 
Efficient access to "middle" elements 
Support a fast "find" method

Lists are resizable ordered collections of data that support sequential accesss (iteration) 
Categories of operations 

insert/add 
get / access sequentially 
remove elements 
big picture mutation - reverse 
medium picture mutation - swap positions of two values; sort, find 

vs. replace
toString 
sublist 

2



Quick notes on implementation
Copyright (c) 2013 Samuel A. Rebelsky. 

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

3

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2013F, Class 22: OOD in Practice: Designing a List Interface
	The design of ADTs, revisited
	Exercise: Designing a list ADT
	Quick notes on implementation


