Algorithms and OOD (CSC 207 2013F) : EBoards

CSC207.01 2013F, Class 19: Analyzing Algorithms

Overview

® Preliminaries

O Admin.

O Questions on HW5.

o HWBG6.
Comparing algorithms.
Potential problemsin computing running time.
Asymptotic analysis.
Big-O, formalized.
Implications of Big-O.
Doing informal asymptotic analysis.
Some recurrence relations.
Experimental analysis.

Admin

Reading for Wednesday: Linear and Binary Search in Java. (And yes, it'sready.)
EC Opportunities
O CSExtras Thursday @ 4:30: Adam, Jordan, and Sean on SysAdmin stuff
O No Learning from Alumni this week
O CSTable Friday (Coding the Law)
O Others?
Other things
O Poweshiek CARES March Thursday, Oct. 3. Meet at Drake at 5 p.m.
O GHS Homecoming Parade Thursday, Oct. 3. If you've never seen a small-town homecoming
parade, it’sworth it.
® Mr. Stone will be guest lecturing (or at least supervising lab) on Wednesday and Friday.
O Support each other

HW5

e I'm having trouble with ArrayLists. ArrayList incidents = new ArrayList(); return
incidents.toArray();
® Why am | getting this strange message about "incompatible version”
O Youneed Java7
O If you want, you can recompile yourself; simple-ushahidi-api on github
O Or grab from our examples folder
O If you use Java 6, you won't be able to do https urls, ask TY for a URL without https
http://burgermap.org

HW6

® Fun and open-ended (Plus the legendary Dutch National Flag)

Comparing algorithms

There' s more than one algorithm to solve any given problem.
Example: Exponentiation x*n for double x and non-negative integer n
O for loop
O recursively double pow(double x, int n) { if (n==0) return 1; else return X * pow(x, n-1); }
O recursively, using divide and conquer double pow(double X, int n) { if (n == 0) return 1; else if
(n% 2 =0) { double tmp = pow(x, n/2); return tmp*tmp; } elsereturn x * pow(x, n-1); }
O Factor n, find x*n for each prime factor, then multiply together
O John Napier (and other logartihmic folks) Table of e*nand In_n
Y ou cannot use the built-in pow method. We' re assuming that you' re implementing it.
Which is best?
O Fastest/Running time efficiency (parameterized by input size)
Lines of code
Most elegant
Memory efficiency (parameterized by input size)
Safety from errors
O Accuracy
Most of the time, running time is the most important (after correctness)

O O O O

Potential problemsin computing running time

® Strategy one: Count the number of steps
O For loop exponent: increment i N times, multiply N times, test N times; afew more assignments
® May be easiest to assume that most operations take the same amount of time.
® Strategy two: Implement them all and run them on some inputs
O A lot of effort
O Inputs have a big effect (in the sense that we can see very different running times on the same
"size" input with the same algorithm)
O Running programs is unpredicatable
® For our first pass: SIMPLIFY AND MODEL

Asymptotic analysis

Look at the shape of the curve that bounds the running time (for the worst case of each input size)
Goal: A way to compute them and away to compare them.
How fast does it grow? linear, quadratic, cubic, expontential, logarithmic, constant time
Ways to think about these: What usually happensif | double the size of the input?
O Linear time: Double the input -> Double the time

O Quadratic: Double the input -> Quadruple the time

O Constant: Double the input -> Sametime

O Logaraithmic (base 2): Double the input -> Increase by a constant
O Exponential: Square the time

Big-O, formalized

® O(g(n)) isaSET of functions
e f(n)isinO(g(n)) iff
O Existsn0> 0
O Existsd>0
O |f(n)] <= |d*g(n)| for essentially all n> nO

I mplications of Big-O

® OisnoO.
e if f(n)isin O(g(n)) and g(n) isin O(h(n)), f(n) isin O(h(n))

e if f(n)isin O(g(n)), c*f(n) isalsoin O(g(n))

® O(c*g(n)) = O(g(n)/c) = O(g(n))

e if f(x) = g(x) + h(x) and g(x) isin O(h(x)), f(x) isin O(h(x)) f(x) = 2000x + (x"2)/3 f(X) <= g(x) +
h(x) <= d*h(x) + h(x) <= (d+1)h(x)

Doing informal asymptotic analysis

® |terative
O Count steps
O Count loop iterations
O Multiply
® Recursive
O Build recursive definitions of running time Binary search time(n) <= ¢ + time(n/2) time(n) =
g*log(n) for some q

Somerecurrencerelations

Experimental analysis

Copyright (c) 2013 Samuel A. Rebelsky.

Thiswork is licensed under a|Creative Commons Attribution 3.0 Unported Licensd To view acopy of this

license, visitlhttp://creati vecommons. org/ |l i censes/ by/ 3. 0/|or send a letter to Creative

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

	CSC207.01 2013F, Class 19: Analyzing Algorithms
	Comparing algorithms
	Potential problems in computing running time
	Asymptotic analysis
	Big-O, formalized
	Implications of Big-O
	Doing informal asymptotic analysis
	Some recurrence relations
	Experimental analysis

