
Algorithms and OOD (CSC 207 2013F) : EBoards

CSC207.01 2013F, Class 19: Analyzing Algorithms

Overview

Preliminaries
Admin.
Questions on HW5.
HW6.

Comparing algorithms.
Potential problems in computing running time.
Asymptotic analysis.
Big-O, formalized.
Implications of Big-O.
Doing informal asymptotic analysis.
Some recurrence relations.
Experimental analysis.

Admin

Reading for Wednesday: Linear and Binary Search in Java. (And yes, it’s ready.)
EC Opportunities

CS Extras Thursday @ 4:30: Adam, Jordan, and Sean on SysAdmin stuff
No Learning from Alumni this week
CS Table Friday (Coding the Law)
Others?

Other things
Poweshiek CARES March Thursday, Oct. 3. Meet at Drake at 5 p.m.
GHS Homecoming Parade Thursday, Oct. 3. If you’ve never seen a small-town homecoming
parade, it’s worth it.

Mr. Stone will be guest lecturing (or at least supervising lab) on Wednesday and Friday.
Support each other

HW5

I’m having trouble with ArrayLists. ArrayList incidents = new ArrayList(); return
incidents.toArray();
Why am I getting this strange message about "incompatible version"

You need Java 7
If you want, you can recompile yourself; simple-ushahidi-api on github
Or grab from our examples folder
If you use Java 6, you won’t be able to do https urls, ask TY for a URL without https
http://burgermap.org

1

HW6

Fun and open-ended (Plus the legendary Dutch National Flag)

Comparing algorithms
There’s more than one algorithm to solve any given problem.
Example: Exponentiation x^n for double x and non-negative integer n

for loop
recursively double pow(double x, int n) { if (n == 0) return 1; else return x * pow(x, n-1); }
recursively, using divide and conquer double pow(double x, int n) { if (n == 0) return 1; else if
(n % 2 = 0) { double tmp = pow(x, n/2); return tmp*tmp; } else return x * pow(x, n-1); }
Factor n, find x^n for each prime factor, then multiply together
John Napier (and other logartihmic folks) Table of e^n and ln_n

You cannot use the built-in pow method. We’re assuming that you’re implementing it.
Which is best?

Fastest/Running time efficiency (parameterized by input size)
Lines of code
Most elegant
Memory efficiency (parameterized by input size)
Safety from errors
Accuracy

Most of the time, running time is the most important (after correctness)

Potential problems in computing running time
Strategy one: Count the number of steps

For loop exponent: increment i N times, multiply N times, test N times; a few more assignments
May be easiest to assume that most operations take the same amount of time.

Strategy two: Implement them all and run them on some inputs
A lot of effort
Inputs have a big effect (in the sense that we can see very different running times on the same
"size" input with the same algorithm)
Running programs is unpredicatable

For our first pass: SIMPLIFY AND MODEL

Asymptotic analysis
Look at the shape of the curve that bounds the running time (for the worst case of each input size)
Goal: A way to compute them and a way to compare them.
How fast does it grow? linear, quadratic, cubic, expontential, logarithmic, constant time
Ways to think about these: What usually happens if I double the size of the input?

Linear time: Double the input -> Double the time

2

Quadratic: Double the input -> Quadruple the time
Constant: Double the input -> Same time
Logaraithmic (base 2): Double the input -> Increase by a constant
Exponential: Square the time

Big-O, formalized
O(g(n)) is a SET of functions
f(n) is in O(g(n)) iff

Exists n0 > 0
Exists d > 0
|f(n)| <= |d*g(n)| for essentially all n > n0

Implications of Big-O
O is no 0.

if f(n) is in O(g(n)) and g(n) is in O(h(n)), f(n) is in O(h(n))

if f(n) is in O(g(n)), c*f(n) is also in O(g(n))
O(c*g(n)) = O(g(n)/c) = O(g(n))
if f(x) = g(x) + h(x) and g(x) is in O(h(x)), f(x) is in O(h(x)) f(x) = 2000x + (x^2)/3 f(x) <= g(x) +
h(x) <= d*h(x) + h(x) <= (d+1)h(x)

Doing informal asymptotic analysis
Iterative

Count steps
Count loop iterations
Multiply

Recursive
Build recursive definitions of running time Binary search time(n) <= c + time(n/2) time(n) =
q*log(n) for some q

Some recurrence relations

Experimental analysis
Copyright (c) 2013 Samuel A. Rebelsky.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative

3

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

4

	CSC207.01 2013F, Class 19: Analyzing Algorithms
	Comparing algorithms
	Potential problems in computing running time
	Asymptotic analysis
	Big-O, formalized
	Implications of Big-O
	Doing informal asymptotic analysis
	Some recurrence relations
	Experimental analysis

