CSC207.01 2013F, Class 19: Analyzing Algorithms

Overview

- Preliminaries
- Admin.
- Questions on HW5.
- HW6.
- Comparing algorithms.
- Potential problems in computing running time.
- Asymptotic analysis.
- Big-O, formalized.
- Implications of Big-O.
- Doing informal asymptotic analysis.
- Some recurrence relations.
- Experimental analysis.

Admin

- Reading for Wednesday: Linear and Binary Search in Java. (And yes, it's ready.)
- EC Opportunities
- CS Extras Thursday @ 4:30: Adam, Jordan, and Sean on SysAdmin stuff
- No Learning from Alumni this week
- CS Table Friday (Coding the Law)
- Others?
- Other things
- Poweshiek CARES March Thursday, Oct. 3. Meet at Drake at 5 p.m.
- GHS Homecoming Parade Thursday, Oct. 3. If you've never seen a small-town homecoming parade, it's worth it.
- Mr. Stone will be guest lecturing (or at least supervising lab) on Wednesday and Friday.
- Support each other

HW5

- I'm having trouble with ArrayLists. ArrayList incidents $=$ new ArrayList(); return incidents.toArray();
- Why am I getting this strange message about "incompatible version"
- You need Java 7

O If you want, you can recompile yourself; simple-ushahidi-api on github

- Or grab from our examples folder

O If you use Java 6, you won't be able to do https urls, ask TY for a URL without https http://burgermap.org

- Fun and open-ended (Plus the legendary Dutch National Flag)

Comparing algorithms

- There's more than one algorithm to solve any given problem.
- Example: Exponentiation $x^{\wedge} n$ for double x and non-negative integer n

O for loop

- recursively double pow(double x , int n$)$ \{ if $(\mathrm{n}==0)$ return 1 ; else return $\mathrm{x} * \operatorname{pow}(\mathrm{x}, \mathrm{n}-1)$; \}

O recursively, using divide and conquer double pow(double x, int n) \{ if ($n==0$) return 1 ; else if ($\mathrm{n} \% 2=0$) $\{$ double $\operatorname{tmp}=\operatorname{pow}(\mathrm{x}, \mathrm{n} / 2)$; return tmp*tmp; \} else return $\mathrm{x} * \operatorname{pow}(\mathrm{x}, \mathrm{n}-1) ;$ \}

- Factor n , find $\mathrm{x}^{\wedge} \mathrm{n}$ for each prime factor, then multiply together
- John Napier (and other logartihmic folks) Table of $\mathrm{e}^{\wedge} \mathrm{n}$ and $\mathrm{ln} _\mathrm{n}$
- You cannot use the built-in pow method. We're assuming that you're implementing it.
- Which is best?
- Fastest/Running time efficiency (parameterized by input size)
- Lines of code
- Most elegant
- Memory efficiency (parameterized by input size)
- Safety from errors
- Accuracy
- Most of the time, running time is the most important (after correctness)

Potential problems in computing running time

- Strategy one: Count the number of steps
- For loop exponent: increment i N times, multiply N times, test N times; a few more assignments
- May be easiest to assume that most operations take the same amount of time.
- Strategy two: Implement them all and run them on some inputs
- A lot of effort
- Inputs have a big effect (in the sense that we can see very different running times on the same "size" input with the same algorithm)
O Running programs is unpredicatable
- For our first pass: SIMPLIFY AND MODEL

Asymptotic analysis

- Look at the shape of the curve that bounds the running time (for the worst case of each input size)
- Goal: A way to compute them and a way to compare them.
- How fast does it grow? linear, quadratic, cubic, expontential, logarithmic, constant time
- Ways to think about these: What usually happens if I double the size of the input?
- Linear time: Double the input -> Double the time
- Quadratic: Double the input -> Quadruple the time
- Constant: Double the input -> Same time

O Logaraithmic (base 2): Double the input -> Increase by a constant

- Exponential: Square the time

Big-O, formalized

- $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ is a SET of functions
- $f(n)$ is in $O(g(n))$ iff
- Exists n0>0
- Exists $d>0$
- $|f(n)|<=\left|d^{*} g(n)\right|$ for essentially all $n>n 0$

Implications of Big-O

- O is no 0 .
- if $\mathrm{f}(\mathrm{n})$ is in $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ and $\mathrm{g}(\mathrm{n})$ is in $\mathrm{O}(\mathrm{h}(\mathrm{n}))$, $\mathrm{f}(\mathrm{n})$ is in $\mathrm{O}(\mathrm{h}(\mathrm{n}))$
- if $f(n)$ is in $O(g(n)), c^{*} f(n)$ is also in $O(g(n))$
- $\mathrm{O}\left(\mathrm{c}^{*} \mathrm{~g}(\mathrm{n})\right)=\mathrm{O}(\mathrm{g}(\mathrm{n}) / \mathrm{c})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$
- if $f(x)=g(x)+h(x)$ and $g(x)$ is in $O(h(x)), f(x)$ is in $O(h(x)) f(x)=2000 x+\left(x^{\wedge} 2\right) / 3 f(x)<=g(x)+$ $\mathrm{h}(\mathrm{x})<=\mathrm{d} * \mathrm{~h}(\mathrm{x})+\mathrm{h}(\mathrm{x})<=(\mathrm{d}+1) \mathrm{h}(\mathrm{x})$

Doing informal asymptotic analysis

- Iterative
- Count steps
- Count loop iterations
- Multiply
- Recursive
- Build recursive definitions of running time Binary search time $(\mathrm{n})<=\mathrm{c}+\operatorname{time}(\mathrm{n} / 2)$ time $(\mathrm{n})=$ $q^{*} \log (\mathrm{n})$ for some q

Some recurrence relations

Experimental analysis

Copyright (c) 2013 Samuel A. Rebelsky.

This work is licensed under a Creative Commons Attribution 3.0 Unported License To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative

Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

