
Algorithms and OOD (CSC 207 2013F) : EBoards

CSC207.01 2013F, Class 12: Interfaces and
Polymorphism

Overview

Admin.
Interfaces.
Polymorphism.
An example: Text blocks.

Admin

Reading for Friday: Inheritance
Sorry for the mixup/delay on today’s readings. I’ll do my best to guide you through the same
material.

(No lab.)
EC Opportunities

Convocation noon, Wednesday.
Learning from Alumni Thursday @ 2:15 Sam Tape and company. (3821)
CS Extras Thursday @ 4:30: Kim Spasaro on Linguistics Programming (3821)
CS Table Friday (pair programming)
Other?

Are there questions on HW4?
The registers should hold fractions

Interfaces
Goal in program design: Separate WHAT your code does from HOW your code achieves that goal.

You can change your implementation without affecting your client code
Your clients can’t "mess up" your code.
You think differently about programming if you separate the two

Example: Points in the plane
Get the coordinates of the point:

distance from the x axis and y axis (x, y)
getX()
getY()

distance from the origin and angleq
getAngle()
getDistance()

Java encourages this approach

1

Interfaces provide the WHAT, not the how

public interface Point2D {
 double getX();
 double getY();
 double getAngle();
 double getDistance();
 Point2D add(Point2D other);
 // DOT PRODUCT!
 Point2D multiply(Point2D other);
} // interface Point2D

public class XYPoint implements Point2D {
 ...
}

public class Vector2D implements Point2D {
 ...
}

Two magic things happen with the "implements" keywords

Java forces you to implement all of the methods in Point2D.
If someone writes code that expects a Point2D, it will work with an XYPoint

Polymorphism
Polymorphism is an approach to save code / avoid repetitous code.

Consider squaring numbers

Scheme

(define square (lambda (num) (* num num)))a

C

int squareInt(int x) { return xx; } double squareDouble(double x) { return xx; }

Java permits overloading

int square(int x) { return xx; } double square(double x) { return xx; }

BUt the code is repetitious!

Why not code with copy-paste-change?
Inelegant - You can do it better by writing a single procedure (we hope)
What if we have to change something?
Code bloat

2

Scheme’s approach is great, but not

An example: Text blocks
 public interface TextBlock {
 int getWidth();
 int getHeight();
 String getRow(int i) throws Exception;
 } // interface TextBlock

 public class TextLine implements TextBlock {
 ...
 }

 public class VerticallyComposeTextBlock implements TextBlock {
 ...
 }

 TextBlock fiona = new TextLine("Hello");
 TextBlock john = new TextLine("Goodbye");
 TextBlock adam = new VCTB(fiona,john);
 TextBlock mark = new TextLine("Mark");
 TextBlock sunshine = new VCTB(adam, mark);

Copyright (c) 2013 Samuel A. Rebelsky.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

3

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2013F, Class 12: Interfaces and Polymorphism
	Interfaces
	Polymorphism
	An example: Text blocks

