
Algorithms and OOD (CSC 207 2013F) : EBoards

CSC207.01 2013F, Class 09: Input and Output

Overview

Preliminaries
Admin.
A few quick notes on HW 2
Questions on HW 3

Leftover types topics.
A few notes on textual output and input.
Output.
Input.
Lab.

Admin

The strange things that CS students discuss: "If two people are dating, are they boyfriend and
girlfriend (or boyfriend and boyfriend) (or girlfriend and girlfriend) or (gender-netural-term-friend
and ...)?"
Reading for Monday (it’s ready!)

Exceptions
I’ve prepared a lab for today, but I don’t know if there will be time.
I hear that some of you are losing files. You should make it a practice to save early and often. You
should also make it a practice to commit regularly. (Say, after each working procedure you write.)
I’m in the midst of grading HW2. I should have it done by Monday. We’ll discuss the averaging
problem.
Only about half the class has filled out the prologue (as of 8:30 p.m. on Thursday)
EC opportunities:

CS Table, Friday: Trusting Trust.
CS Table, next Friday: Pair Programming.
More?

HW 2

For the averaging problem, there are a variety of strategies

Promote the type of the parameters.

Many of you used double. We’ll talk about why that’s a bad idea.
Floating points approximate. Are you sure your code works correctly for every
situation?
doubles are 64 IEEE floating-point numbers, they have about 52 bits, so we are okay

We’ll also talk about why promotion may not be the best strategy. what if we have

1

public static long average(long left, long right) { return (left + right) / 2; } // average

will this work?

 public static long average(long left, long right) {
 return (long) (((double) left + (double) right) / 2);
 } // average

how about this?

 public static long average(long left, long right) {
 return (left/2) + (right/2);
 } // average

nope, won’t work if both are odd ... so

 public static long average(long left, long right) {
 // Compute the average w/o overflow
 long tmp = (left/2) + (right/2);
 // Handle introduced inaccuracies
 if (isOdd(left) && isOdd(right))
 return tmp+1;
 else
 return tmp;
 } // average

coming up: generalized average: taking an array of longs as input

Java carefully specifies all of its numeric types longs are 64 bits, twos complement
A few of you changed the preconditions. I was pretty clear that I wanted you to rewrite the
procedure, but I’ll accept that as an approach (particularly since the testing lab suggests that
approach for a similar problem).
Anything else?

HW 3

Yes, exhaustive search is an acceptable initial technique for the last problem. (And no, it won’t be
efficient.)

You might also try a strategy in which you say "Can I do this with one coin, with two coins,
with three coins, ...?"

No, you don’t need to set up a lot of test cases for the last problem.
What should we do on splitCSV if the input is crappy (e.g., only one double quotation mark) - You
can crash and burn.
For the de-leet-ful problem, are all 3’s e’s? (Not quite, some are parts of B’s, but there should be no
3’s in your output.)

2

Leftover types topics
Two dimensions:

Real vs. Int
primitive type, object corresponding to primitive type, or Big

Primitive types: Mostly like C, except specified
ints are twos-complement

But the primitive types aren’t objects
And so we have java.lang.Integer and java.lang.Double

And we want arbitrary precisions
java.math.BigInteger

A few notes on textual output and input
Textual I/O is useful for files
We use an OO approach to I/O

Output
PrintWriter

print
println
format (like printf)

PrintWriters buffer their output
need flush() to force outuput

Can create with System.out

Can create with files - new PrintWriter(new File(’ooh.csv’)) ;

Input
BufferedReader

read - read a character
readLine - read a line

Can create with System.in
Can create with files new BufferedReader(new FileReader(new File(’ooh.csv’)));

Lab
 public static void main(String[] args) throws Exception {
 // ...
 }

3

Copyright (c) 2013 Samuel A. Rebelsky.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

4

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

	CSC207.01 2013F, Class 09: Input and Output
	Leftover types topics
	A few notes on textual output and input
	Output
	Input
	Lab

