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Summary: We do a quick introduction to writing extensions for Racket. 

Related Pages:

EBoard. 

Notes:

You’re probably busy enough this week that there is no homework! 
For what we’re doing today, it’s helpful to have a reference page up. 
Today’s convo is cool. 
Please attend next week’s class for debriefing! Overview:

About Racket 
It’s Going to Seem Familiar 
Extension Basics 
Compilation 
Loading

About Racket
Racket is a variant of the Scheme programming language, designed for a variety of purposes.
Racket includes strong support for teaching computer science. 
Racket has a nice IDE called DrRacket. We will be migrating 151 to using Racket and
DrRacket. 

Racket is the next generation of the Scheme implementation we use already. 
DrRacket provided some inspiration for the MediaScheme IDE, but is also different in
many ways.

Our focus will primarily be extending Racket with a variety of features 
Some DBus communcation 
Some Gimp stuff 
Some simplification 
More?

We may also look at embedding a Racket interpreter into the GIMP as an alternative to
TinyScheme. 

We have something like that implemented now.
Some documentation that may help as you do this stuff is at http://docs.racket-lang.org/inside/.
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It’s Going to Seem Familiar
We’ll need to learn some standard template code. 
We’ll need to learn about a new compound type. 
We’ll need to learn the form of a function. 
We’ll need to learn the instructions for adding a function. 
We’ll need to learn copmilation commands. 
...

Extension Basics
We need to provide 3 basic functions that Racket uses to communicate with our code. 

scheme_initialize , called when the code is first loaded. 
scheme_module_name , called when it has to query our code. 
scheme_reload , called when the code gets reloaded.

All of these return Scheme_Object  values. As you might guess, a Scheme_Object  is
Racket’s beautiful generic type. 
All of the extensions (new functions) you write will have the form 

Scheme_Object *
function (int argc, Scheme_Object *argv[])
{
} // function
* You can check types with fun things like SCHEME_INTP
  SCHEME_DOUBLEP, and the ilk.
* You can extract values with SCHEME_INT_VAL, 
  SCHEME_DOUBLE_VAL, and such.
* You install functions in two steps; First you make a function object
  and then you tell the environment about it.  (This code typically goes in
  the reload function.)
  + scheme_make_prim_w_arity (proc, internal-name, min-arity, max-arity)
  + scheme_add_global (extenal-name, result-of-prev-fun, env)
* Note that we have at least three names associated with the function.  We’ll 
  play with changing each of these so that you can understand the 
  difference.

Compilation
 [Side note: We’re supposed to deal with garbage collection, but we’ll
  avoid that issue for now.  Our programs may leak.]
 Two steps: Compile to object file, link to shared object (rather
  than executable).
 Use raco ctool for both tasks, just with different flags.

   --cc flag for compilation.
   --ld flag for linking.
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Loading
 [We’re doing some simple instructions for loading code.  When we get down
  to the nitty-gritty details, it’s a bit more complex.]

 (load-extension " prefix.so")
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