
CSC 195.01 2013S Technologies for Mediascripting

Class 13: Racket Internals (1): Overview
Held: Thursday, 2 May 2013

Summary: We do a quick introduction to writing extensions for Racket.

Related Pages:

EBoard.

Notes:

You’re probably busy enough this week that there is no homework!
For what we’re doing today, it’s helpful to have a reference page up.
Today’s convo is cool.
Please attend next week’s class for debriefing! Overview:

About Racket
It’s Going to Seem Familiar
Extension Basics
Compilation
Loading

About Racket
Racket is a variant of the Scheme programming language, designed for a variety of purposes.
Racket includes strong support for teaching computer science.
Racket has a nice IDE called DrRacket. We will be migrating 151 to using Racket and
DrRacket.

Racket is the next generation of the Scheme implementation we use already.
DrRacket provided some inspiration for the MediaScheme IDE, but is also different in
many ways.

Our focus will primarily be extending Racket with a variety of features
Some DBus communcation
Some Gimp stuff
Some simplification
More?

We may also look at embedding a Racket interpreter into the GIMP as an alternative to
TinyScheme.

We have something like that implemented now.
Some documentation that may help as you do this stuff is at http://docs.racket-lang.org/inside/.

1

http://www.cs.grinnell.edu/~rebelsky/Courses/CSC195/2013S/
http://docs.racket-lang.org/inside/

It’s Going to Seem Familiar
We’ll need to learn some standard template code.
We’ll need to learn about a new compound type.
We’ll need to learn the form of a function.
We’ll need to learn the instructions for adding a function.
We’ll need to learn copmilation commands.
...

Extension Basics
We need to provide 3 basic functions that Racket uses to communicate with our code.

scheme_initialize , called when the code is first loaded.
scheme_module_name , called when it has to query our code.
scheme_reload , called when the code gets reloaded.

All of these return Scheme_Object values. As you might guess, a Scheme_Object is
Racket’s beautiful generic type.
All of the extensions (new functions) you write will have the form

Scheme_Object *
function (int argc, Scheme_Object *argv[])
{
} // function
* You can check types with fun things like SCHEME_INTP
 SCHEME_DOUBLEP, and the ilk.
* You can extract values with SCHEME_INT_VAL,
 SCHEME_DOUBLE_VAL, and such.
* You install functions in two steps; First you make a function object
 and then you tell the environment about it. (This code typically goes in
 the reload function.)
 + scheme_make_prim_w_arity (proc, internal-name, min-arity, max-arity)
 + scheme_add_global (extenal-name, result-of-prev-fun, env)
* Note that we have at least three names associated with the function. We’ll
 play with changing each of these so that you can understand the
 difference.

Compilation
 [Side note: We’re supposed to deal with garbage collection, but we’ll
 avoid that issue for now. Our programs may leak.]
 Two steps: Compile to object file, link to shared object (rather
 than executable).
 Use raco ctool for both tasks, just with different flags.

 --cc flag for compilation.
 --ld flag for linking.

2

Loading
 [We’re doing some simple instructions for loading code. When we get down
 to the nitty-gritty details, it’s a bit more complex.]

 (load-extension " prefix.so")

Copyright © 2012 Samuel A. Rebelsky.

This work is licensed under a Creative Commons
Attribution-NonCommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/
or send a letter to Creative Commons, 543 Howard Street, 5th Floor,
San Francisco, California, 94105, USA.

3

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

	Class 13: Racket Internals †1‡: Overview
	About Racket
	It's Going to Seem Familiar
	Extension Basics
	Compilation
	Loading

