
CSC 195.01 2013S Technologies for Mediascripting

Class 03: Automation with Make
Held: Thursday, 7 February 2013

Summary: We consider more details of make, a useful tool for automating steps in building programs on
*nix systems.

Related Pages:

EBoard.

Notes:

I encourage you to go to today’s Thursday extra, which is by some of my research students.
This week’s homework: Find some task you do on our Linux system and write a Makefile to support
it.
We’ll start today’s class with a short discussion of your experiences with git.

Overview:

An introduction to Make
Example 1: Some fun with text
Good Make practice: Standard targets
Example 2: A standard C project
Using variables

An introduction to Make
Purpose: Make it easier to build projects, particularly complex multi-part projects.
We’ll look at two sample projects:

Various forms of text files
A simple set of C programs.

Model: A collection of “targets”
A target is often a file that we want to build. For example, we might want to build "book.pdf".
A target can also be a placeholder name (e.g., "pdf" for "all the PDF files"). These are often
called “phony targets”
To build a target, we follow a sequence of instructions.
Targets often depend upon other files.

At the most basic level, a Makefile contains a collection of targets and instructions for building the
targets.
Format:

1

http://www.cs.grinnell.edu/~rebelsky/Courses/CSC195/2013S/

target: required-file-1 required-file-2 ...
 instruction-1
 instruction-2
 ...

Note that the instructions must be preceded by a tab character (and not the corresponding
number of spaces)

All of the instructions get stored in a file named Makefile
There are ways to give the file other names, but I’m not going to teach them to you.

Example 1: Some Fun with Text
Documents can appear in many forms.
In this activity, we’ll consider "plain" text (more or less), HTML, Postscript, and PDF.
The MarkDown format provides a relatively nice way to convert plain text to formatted HTML.
html2ps is useful for converting HTML to Postscript, which is a nice form for printing.
ps2pdf converts ps files to pdf, which can then be viewed onscreen.
See Examples/Make/Text for more details.

Good Make Practice: Standard Targets
By convention, Makefiles include a variety of targets, so that people who get your project can just
type make standard-target to acheive a particular goal.
Typical targets (almost all are placeholders):

default: The default thing or things to build (e.g., the application or library)
test or check: Instructions for testing the main thing. (Generally predicated on building
default first.)
install: Install the things we’ve just built.
clean: Remove intermediate files (such as .o files).
distclean: Remove everything but the source files.
package: Put everything together into a tarball.

I would recommend that you support default, test, and clean in all of your Makefiles.
When you are packaging code for others, install, distclean, and package are particularly useful.

Example 2: C Programming
Warning! This example may use more C than you know. Let me know when you have questions.

Typically, C programs are broken up into many separate files.
Typically, different (but overlapping) subsets of those files are used to make different applications.
Here’s a simple (but fairly standard) project I’ve set up.

srmath.c is a math library I’ve designed and want to use in various projects. (Right now, it
only incluldes a gcd function.)
srmath.h is the header file that the C compiler uses for type checking and other similar
purposes.

2

srtest.c is my testing library.
srtest.h is the header file for my testing library.
gcdtest.c is a test program for the gcd function.
gcd.c is a user interface to the gcd function (that is, a program you can run from the command
line).

So, how do I put things together?
To build my test, I need to

Compile srmath.c to srmath.o.
Compile srtest.c to srtest.o.
Compile gcdtest.c to gcdtest.o.
Link srmath.o srtest.o and gcdtest.o to gcdtest

Building my gcd application is similar. In that case, I need to
Compile srmath.c to srmath.o.
Compile srtest.c to srtest.o.
Compile gcd.c to gcd.o.
Link srmath.o srtest.o and gcd.o to gcd

Some parts of this are automated by Make, even if I don’t type anything.
E.g., I can type make srmath.o without creating a rule.

Other parts require instructions
E.g., I need a rule for "Link srmath.o srtest.o and gctest.o"

Here’s a question: Can Make tell what work needs to be redone if I change a file?

Simplifying Makefiles with Variables
As you’ve already found when programming, variables tend ot make your life easier.
Make has four kinds of variables (more or less)

Your variables
Standard variables you set
Variables from the standard rules
Automatic variables

You access every variable with $var or $(var)
You set most variables with var = VALUE
Your variables

You get to choose the name and purpose
Standard variables

Used by Make in common rules, but also by some other programs
Some examples

CFLAGS
LDFLAGS
LDLIBS

Variables from the standard rules
Also come from the common rules
Some examples

3

$(CC)
$(COMPILE.c)
...

Automatic variables
Computed by Make from the rule
End up being useful in writing more concise or more general rules
Some of my favorites

$@ - The target
$< - The first prereq
$? - Newer prereqs
$^ - All prereqs
$* - The stem of the target

We’ll work on updating our sample Makefiles to use variables.

Copyright © 2012 Samuel A. Rebelsky. This work is licensed under a Creative Commons
Attribution-NonCommercial 3.0 License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative
Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

4

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

	Class 03: Automation with Make
	An introduction to Make
	Example 1: Some Fun with Text
	Good Make Practice: Standard Targets
	Example 2: C Programming
	Simplifying Makefiles with Variables

