
CSC161 2010F Imperative Problem Solving 

Class 45: Hash Tables, Continued
Held: Friday, 19 November 2010

Summary: We continue our exploration of hash tables by writing code for one. 

Related Pages:

EBoard. 
Reading: K&R 6.6. 

Notes:

A Kington story. 
Assignment 9 is now ready.

Overview:

Review. 
Collisions. 
A Hash Functions. 
Building Code.

Review
Dictionaries are a common ADT. Goal: Provide "indexed" access where the index is a string, rather
than a number. 

We call the index the key. 
We call the associated value the value.

Two basic operations: insert and find. 
Lots of other possible operations. 
We often implement dictionaries with hash tables. 
In a hash table, we use a hash function to convert the key to an integer index. 
To store a value, we add a key/value pair to that index. 
To retrieve a value by key, we look in that index and make sure that we have the matching key.

A Problem: Collisions
There’s a big potential problem with hash tables: What happens when two keys hash to the same
index? 
There are two possible solutions: 

Systematically look elsewhere in the hash table 
Store a list of key/value pairs in the array

1

http://www.cs.grinnell.edu/~rebelsky/Courses/CSC161/2010F/
http://chronicle.com/blogs/postcards/for-grinnells-new-president-tense-negotiations-over-sheet-cake/336/


K&R use the second technique

A Hash Function
I’ve given you the K&R hash function in slightly better form. 
We’ll explore it a bit.

Building a Hash Table Library
Okay, let’s get to work building a hash table library. 

We’ll mix tasks with issues in C that we need to figure out.
First, we’ll specify the data type and the functions. 
Next, we’ll build a test progrma or two. 

One interactive 
One unit test

Then we’ll work on the details of the implementation, stealing from K&R as we need to.

2


	Class 45: Hash Tables, Continued
	Review
	A Problem: Collisions
	A Hash Function
	Building a Hash Table Library


