
CSC161 2010F Imperative Problem Solving

Class 44: Hash Tables
Held: Wednesday, 17 November 2010

Summary: We consider one of the more important ADTs, the dictionary, and an equally important
implementation of dictionaries, the hash table.

Related Pages:

EBoard.
Reading: K&R 6.5 and 6.6.
Due: Assignment 8.

Notes:

There is no reading for Friday!
EC for tomorrow’s Thursday Extra: Experimental Algorithmics.
EC for some part of the Rosenfield Corn Symposium.
I will be unavailable after 1:45 today.

Overview:

ADTs and Data Structures.
The Dictionary ADT.
Implementing Dictionaries with Association Lists.
Hash Tables.

ADTs and Data Structures
As you’ve started to see, in our algorithm design, different ways of organizing data give you different
advantages and disadvantages.
For example, in CSC151 you learned about arrays and lists. You’ve just learned about files.

Both provide a way of grouping data.
Lists are easy to extend and shrink.
Arrays are mutable.
Arrays provide fast access to individual elements.
Files provide persistent storage.

It’s time to start looking at other mechanisms for organizing data.
In designing structures, we may look at three related issues:

The high-level overview of what operations the structure provides. We often refer to this as the
abstract data type or ADT.
The high-level details of the implementation of the ADT. We often refer to this as the data
structure. One ADT may have many corresponding data structures.

1

http://www.cs.grinnell.edu/~rebelsky/Courses/CSC161/2010F/

The low-level details of the implementation of the data structure. (E.g., do we implement it with
an array, or a bunch of pairs, or)

Note: While we will often start with the ADT and work down to the implementing data structure, the
history of CS suggests the reverse: People designed data structures and then later realized that they
should generalize.

The Dictionary ADT
The Dictionary is one of everyone’s favorite ADT’s. A dictionary stores key/value pairs and typically
provides the following basic operations.

Add a key/value pair to the dictionary.
Given a key, look up the corresponding value in the dictionary.

Sometimes we add additional operations
Delete a key/value pair
Given a value, find one (all) of the corresponding keys.
Do something for each key/value pair
Determine whether a key appears in the dictionary
...

In a typed language like C, we often limit the type of the key and value (e.g., to strings).
Dictionaries have many other names: I have seen them referred to as Maps, Tables, Hashes, and
Associative Arrays

Association Lists
You’ve already seen one implementation of dictionaries: Association lists.
Association lists are easy to implement and use.
But they are slow.

Hash Tables
Hash tables are one of the most common mechanisms for implementing dictionaries.
Hash tables are fast (Expected time: A constant number of steps.)
Key idea: Arrays are fast. So turn the key into a number that you can use to index the array.
We use a hash function to turn keys into integers. We then mod the integer by the size of the table.
A hash function must always give the same integer for the same key.
A hash function should give different integers for different keys. (Counting suggests that this is not
always possible.)
What do we do about collisions? Ah, that’s the rub.

We can repeatedly add some constant and look elsewhere in the table until we find a free spot.
We can store a list/array of values at each integer.

2

	Class 44: Hash Tables
	ADTs and Data Structures
	The Dictionary ADT
	Association Lists
	Hash Tables

