|CSC161 2010F Imper ative Problem Solving

Class44: Hash Tables
Held: Wednesday, 17 November 2010

Summary: We consider one of the more important ADTSs, the dictionary, and an equaly important
implementation of dictionaries, the hash table.

Related Pages:

e EBoard.
® Reading: K&R 6.5 and 6.6.
® Due: Assignment 8.

Notes:

® Thereisno reading for Friday!

® EC for tomorrow’s Thursday Extra: Experimental Algorithmics.
® EC for some part of the Rosenfield Corn Symposium.

e | will be unavailable after 1:45 today.

Overview:

ADTsand Data Structures.

The Dictionary ADT.

Implementing Dictionaries with Association Lists.
Hash Tables.

ADTsand Data Structures

® Asyou've started to see, in our algorithm design, different ways of organizing data give you different
advantages and disadvantages.
® For example, in CSC151 you learned about arrays and lists. You've just learned about files.
O Both provide away of grouping data.
O Listsare easy to extend and shrink.
O Arraysare mutable.
O Arrays provide fast access to individual elements.
O Files provide persistent storage.
® |t'stimeto start looking at other mechanisms for organizing data.
® |ndesigning structures, we may look at three related issues:
O The high-level overview of what operations the structure provides. We often refer to this as the
abstract data type or ADT.
O The high-level details of the implementation of the ADT. We often refer to this as the data
structure. One ADT may have many corresponding data structures.

http://www.cs.grinnell.edu/~rebelsky/Courses/CSC161/2010F/

O Thelow-level details of the implementation of the data structure. (E.g., do we implement it with
an array, or abunch of pairs, or)
® Note: While we will often start with the ADT and work down to the implementing data structure, the
history of CS suggests the reverse: People designed data structures and then later realized that they
should generaize.

TheDictionary ADT

® TheDictionary is one of everyone'sfavorite ADT’s. A dictionary stores key/value pairs and typically
provides the following basic operations.
O Add akey/value pair to the dictionary.
O Given akey, look up the corresponding value in the dictionary.
® Sometimes we add additional operations
O Delete akey/value pair
O Given avalue, find one (all) of the corresponding keys.
O Do something for each key/value pair
O Determine whether akey appearsin the dictionary
o}

e |natyped language like C, we often limit the type of the key and value (e.g., to strings).
® Dictionaries have many other names. | have seen them referred to as Maps, Tables, Hashes, and
Associative Arrays

Association Lists

® You've aready seen oneimplementation of dictionaries: Association lists.
® Association lists are easy to implement and use.
e But they are slow.

Hash Tables

Hash tables are one of the most common mechanisms for implementing dictionaries.
Hash tables are fast (Expected time: A constant number of steps.)
Key idea: Arrays are fast. So turn the key into a number that you can use to index the array.
We use a hash function to turn keys into integers. We then mod the integer by the size of the table.
A hash function must always give the same integer for the same key.
A hash function should give different integers for different keys. (Counting suggests that this is not
always possible.)
What do we do about collisions? Ah, that’s the rub.
O We can repeatedly add some constant and ook elsewhere in the table until we find a free spot.
O Wecan store alist/array of values at each integer.

	Class 44: Hash Tables
	ADTs and Data Structures
	The Dictionary ADT
	Association Lists
	Hash Tables

