
CSC161 2010F Imperative Problem Solving

Class 30: Make, Revisited
Held: Monday, 25 October 2010

Summary: We consider more details of make, a useful tool for automating lots of stuff.

Related Pages:

EBoard.
Reading: Managing Projects with GNU Make, Chapters 1 and 2..

Notes:

I hope you had a great break.
Returned: HW5, Exam 1. Sorry for the delay.
I got more responses for today’s reading. Thanks. Some of you asked enough questions that I
probably did not need everyone’s.
Reading for Tuesday: K&R 5.1 and 5.2.
Are there questions on Assignment 6?

Overview:

About Make.
Your Questions.
A Collaborative Makefile.

Make
Purpose: Make it easier to build projects, particularly complex multi-part projects.
Model: A collection of “targets”

Each target is something that we might want to build (or a placeholder to help us build stuff)
There are instructions for building each target.

Typical targets:
default: The default thing or things to build (e.g., the application or library)
test or check: Instructions for testing the main thing. (Generally predicated on building
default first.)
install: Install the things we’ve just built.
clean: Remove intermediate files (such as .o files).
package: Put everything together into a tarball.

Variables: Making it easier. Four kinds:
Your variables
Standard variables you set
Variables from the standard rules

1

http://www.cs.grinnell.edu/~rebelsky/Courses/CSC161/2010F/
http://oreilly.com/catalog/make3/book/index.csp

Automatic variables
Your variables

NAME = VALUES

Standard variables you set
CFLAGS
LDFLAGS
LDLIBS

Variables from the standard rules
$(CC)
$(COMPILE.c)
...

Automatic variables
$@ - The target
$< - The first prereq
$? - Newer prereqs
$^ - All prereqs
$* - The stem of the target

Your Questions
Is make basically a new language we need to learn?

I need some review of what .o files are for.
I don’t know what -I does, exactly.
Generally, I don’t understand most of this stuff about libraries. Why are they necessary?
Can we talk a bit more about CFLAGS and similar things?

What is a ’jar’?
Is a lexer a program that is assumed to be built for the implementation of this program, or is it some
automatic file that is generated, or what?
What does flex do?
What does this mean: “First, we setup our experiment by creating an empty yacc source file and
registering with RCSusing ci (that is, we want a version-controlled yacc source file)”
What is bison and what does it do?
Does the suffix .y signify anything specific?
What is an ’awk’ filter?

I still don’t quite understand $(...)
I noticed that the text used a "rm" command in the makefile - does this mean we can use any valid
terminal command in our makefile rules?
I’m a little bit confused about phony targets, though. Because they don’t represent files, are phony
targets kind of like functions?
I was wondering if you might be able to show us how to use wildcards in our makefiles.

2

How does this work?

prog: *.c
 $(CC) -o $@ $^

Exercise
We’ll work together to build a nice Makefile for homework 5.

3

	Class 30: Make, Revisited
	Make
	Your Questions
	Exercise

