
CSC161 2010F Imperative Problem Solving 

Class 23: Building Libraries
Held: Tuesday, 5 October 2010

Summary: We consider why and how to put C code in separate files. 

Related Pages:

EBoard. 
Lab: Simple Libraries in C. 
Reading: K&R 4.3-4.6. 

Notes:

For tomorrow: Read Unit Testing 101 for Non-Programmers. 
Remember: You can vote on campus today!

Overview:

Why We Need Code Libraries. 
Simple Code Libraries in C. 
Lab.

Libraries
We often write functions that we can reuse in other situations and other contexts. 
We could copy those files from program to program. 
But that makes it hard to propagate updates. 
So different languages provide different ways to build libraries or other collections of useful stuff.

In C, you can break a program into separate files. 
You can compile those files together. 
You can compile those files separately and then link them together. 
There are also ways to build libraries in C. 

How does one compile a file separately? 
One builds a .o file. 
make knows about .o files,

How does one join all the .o files together? 
With cc. 
Or with an appropriate make command.

1

http://www.cs.grinnell.edu/~rebelsky/Courses/CSC161/2010F/
http://www.saravanansubramanian.com/Saravanan/Articles_On_Software/Entries/2010/1/19_Unit_Testing_101_For_Non-Programmers.html


How does one file know about the code from another file? 
It can rely on the standard C perspective of “If you don’t tell me anything about a function, I’ll
assume that it’s available and returns an int.” 
You can explicitly indicate that the function is available.

Often, we group the information about a library file into a header which we can then include in any
file that uses it. 
Headers have a suffix of .h.

Lab
Do The lab. 
Be prepared to reflect.

2


	Class 23: Building Libraries
	Libraries
	Lab


