
CSC161 2010F Imperative Problem Solving

Class 13: IEEE Floating Point Representation
Held: Friday, 17 September 2010

Summary: We consider issues in the representation of real numbers, focusing on the design decisions in
the IEEE floating-point representation.

Related Pages:

EBoard.
Reading: Stone & Rebelsky: IEEE Floating Point Representation of Real Numbers..

Notes:

Assignment 4 is now ready.
What did you think about the experience of doing assignment 3?

Overview:

C’s bitwise operations.
Religious wars: Big-endian vs. Little endian representation>.
The problem of real numbers.
One approach: Rationals.
Another approach: Fixed-precision.
Detour: Scientific notation.
The IEEE floating point standard.

Bitwise Operations in C
Logical

& - bitwise "and"
0 and 0 is 0
0 and 1 is 0
1 and 0 is 0
1 and 1 is 1

| - bitwise "or"
0 or 0 is 0
0 or 1 is 1
1 or 0 is 1
1 or 1 is 1

~ - bitwise "not"
not 0 is 1

1

http://www.cs.grinnell.edu/~rebelsky/Courses/CSC161/2010F/

not 1 is 0
Why is this different than negate?

We can use these to extract bits from an integer.
To access the kth bit of i, compute 2k and and it with i
If the result is 0, the bit was 0. If the result is non-zero (true, in C), the bit was 1.

We can use these to change bits in an integers
To change the kth bit of i, compute 2k and or it with i.

We often use integers to store a variety of flags (settings)
One bit per flag
If the bit is on, the flag is set
If the bit is off, the flag is not set

Shifting

<< - left shift
>> - right shift
Lots of variants.
Typically used for faster multiplication and for other clever operations.

<

If an integer is four bytes, how to we number the bytes?
Two normal answers, both with extreme proponents.

The Problem of Real Numbers

Representing Reals
We’ve found ways to represent integers. Will that help with real numbers?
One approach, similar to that for characters: Map between real numbers and integers.

Unfortunately, there isn’t a natural mapping of reals onto the integers.
See your Math professor for more details.

If we’re going to used a fixed number of bits, we’re unlikely to be able to represent many irrational
numbers or particularly small numbers, so we will never be able to get all the reals in a particular
range. We must approximate them.
We’ll design a few different representations and I’ll challenge you to critique them.

You are allowed to reflect on the reading in your criticisms.

One approach: Rational numbers
Since we have no irrational reals, we can represent many real numbers fairly easily as rational
numbers: ratios of two integers.
Reserve some number of bits for the numerator, represented as a signed integer in the notation of
your choice.

2

Reserve some number of bits for the denominator.

Another approach: Fixed precision
A common early representation of reals was the fixed-point strategy.
Given a sequence of bits to use to represent a real number, select a position for the “decimal” point
(except that it should be called the “binary” point).
The column to its left is the 1’s column, the next column to the left is the 2’s, then the 4’s, and so on
and so foth.
The column to the right of the point is the 1/2’s column. The next column is the 1/4’s, and so on and
so forth.
Note that this is effectively a representation of rational numbers with a fixed denominator.

Detour: Scientific Notation
Rather than trying to design a representation from scratch, perhaps we should reflect on common
practices in other disciplines.
Many folks who work with real numbers (including approximations of real numbers) use scientific
notation, as in “1.231 x 105”.
What is involved in scientific notation?

A sign, which indicates whether the number is positive or negative,
A mantissa, which gives the primary digits of the number.
A base of exponentiation (in this case, 10).
An exponent.

Might we not use the same general technique in designing a representation for real numbers?
Such notations are called floating point because the point moves depending on the exponent.

IEE Single-Precision Floating-Point Numbers
Rather than having each computer manufacturer decide on a particular floating point representation,
standards groups worked do design a few standard representations.
Two of the most popular representations are IEEE Single-Precision and Double-Precision
floating-point numbers.

We’ll concentrate on single-precision numbers. Double-precision numbers follow similar
conventions.

Single-precision numbers use 32 bits.
One bit gives the sign.
Eight bits give the exponent (represented in bias-127 notation).
The remaining 23 bits give the mantissa, using fixed-point notation.

Note that the base of exponentiation is not represented. It is instead fixed at 2.
There are some important restrictions on the various parts.

The exponent must be between -126 and 127
The mantissa must be no smaller than 1.0 and cannot be as large as 2.0.

Note the clever trick: Given that restriction on the mantissa, you don’t need to represent the first bit

3

of the mantissa (since it’s always 1).

Special Cases

There are some parts the previous discussion ignores.
The range of exponents only gives 254 different values. We have two additional unused values,
corresponding to bit sequences 00000000 and 11111111.
If the mantissa can be no smaller than 1.0, how do we represent 0?

Special Case: Representing Small Values

If the exponent consists of only 0’s, we use -126 as the exponent and restrict the mantissa to values
no less than 0 and less than 1.
Hence, 0 has an exponent of all 0’s and a mantissa of all 0’s.

Special Case: Error Values

If the exponent consists of only 1’s, the float represents some special value.
Positive infinity uses all 0’s for the mantissa, as does negative infinity (sign bit gives the sign).
Anything else is NaN.

Lab
Lab.
This is an optional lab. We probably won’t have time for it.

4

	Class 13: IEEE Floating Point Representation
	Bitwise Operations in C

	The Problem of Real Numbers
	Representing Reals
	One approach: Rational numbers
	Another approach: Fixed precision
	Detour: Scientific Notation
	IEE Single-Precision Floating-Point Numbers
	Special Cases
	Special Case: Representing Small Values
	Special Case: Error Values

	Lab

