
CSC161 2010F Imperative Problem Solving

Class 12: Binary Representation and Bitwise Operators
Held: Wednesday, 15 September 2010

Summary: We begin to study binary representation, focusing on representations of integers.

Related Pages:

EBoard.
Lab: C’s Bitwise Operations.
Reading: K&R 2.9, 6.9 ; Wright: A Tutorial on Binary Numbers..
Due: Assignment 3: Explaining Assignments and I/O.

Notes:

EC for attending tomorrow’s Thursday extra: Dr. Davis on Participatory Design.
EC for attending tomorrow’s Scholars’ Convocation on Iran.
Reading for Friday: IEEE Floating-Point Representation of Real Numbers.
Although I have a lab listed for today, we are unlikely to do that lab.
Are there questions on Assignment 3?
One question: How do I use math.h?

Overview:

Why study underlying representations?
Basics of binary.
Unsigned integers.
Signed integers.
Some of C’s bitwise operations.

Why Study Representations
As you’ll note, we have a few classes devoted to underlying representations of a variety of types of
numbers.
Why do we study these issues in this course?
As you’ve noted, C makes some assumptions that you understand the underlying representations.

Key types like short, long, and more.
Bitwise operations

Successful programming in C requires you to understand these underlying representations.
Some of the most important:

Unsigned integers
Signed integers
IEEE floating-point numbers.

1

http://www.cs.grinnell.edu/~rebelsky/Courses/CSC161/2010F/

Characters (ASCII and Unicode)

Binary
On most computers, the smallest unit of information is the bit, which has only two possible values:
off/on, 0/1, false/true, whatever.
We combine bits into reasonable groups, such as the byte and word.

On most computers, a byte is 8 bits and a word is big enough to hold an address in memory.
Clearly, we need ways to interpret sequences of bits.
The interpretation is just that: An agreed-upon way to understand the meanings of the bits.

Common interpretations are encoded in most hardware.
Generally, we have rules for interpreting bit sequences as integers, and then rules for interpreting
other values in terms of integers.

E.g., characters
For floating-point numbers, we have a different representation.

Unsigned Integers
Base two numbers. Nothing more, and nothing less.
Practice!

Signed Integers
First problem: How to represent the sign.
Typical solution: Use the leftmost bit to indicate sign.

0 means "positive"
1 means "negative"

Next problem: How does one interpret the remaining bits?
Many possible options. Here are four of the most common.

"Normally". The remaining N-1 bits are simply an unsigned integer.
Formal term: Signed magnitude

"Backwards". 0 represents a negative 1, 1 represents 0.
Formal term: One’s complement

"Encoded". To represent signed N in k bits, we write unsigned N+2k-1 .
Note that in this system, a leading 0 means "negative" and a leading 1 means "positive".
This system is called Excess 2m-1

"Just plain weird": We think procedurally. To negate a number, we flip all the bits and add 1.
This system is called Two’s complement

Exercise: Let’s try a few numbers in 5 bit notation.
What criteria might one use to decide which one to use?

Ease of interpreting numbers.
Ease of adding numbers.
Ease of negating

2

Ease of subtracting
Range of numbers representable
Others ...

We’ll try each of these

Bitwise Operations in C
Logical

& - bitwise "and"
0 and 0 is 0
0 and 1 is 0
1 and 0 is 0
1 and 1 is 1

| - bitwise "or"
0 or 0 is 0
0 or 1 is 1
1 or 0 is 1
1 or 1 is 1

~ - bitwise "not"
not 0 is 1
not 1 is 0
Why is this different than negate?

We can use these to extract bits from an integer.
To access the kth bit of i, compute 2k and and it with i
If the result is 0, the bit was 0. If the result is non-zero (true, in C), the bit was 1.

We can use these to change bits in an integers
To change the kth bit of i, compute 2k and or it with i.

We often use integers to store a variety of flags (settings)
One bit per flag
If the bit is on, the flag is set
If the bit is off, the flag is not set

Shifting

<< - left shift
>> - right shift
Lots of variants.

Lab
Lab.
This is an optional lab. We probably won’t have time for it.

3

4

	Class 12: Binary Representation and Bitwise Operators
	Why Study Representations
	Binary
	Unsigned Integers
	Signed Integers
	Bitwise Operations in C
	Lab

