
CSC161 2010F Imperative Problem Solving 

Class 06: Types and Operators
Held: Monday, 6 September 2010

Summary: We continue our explorations of the basic design of C, focusing on types in C. 

Related Pages:

EBoard. 
Reading: K&R 2 ; GNU Coding Standards, 5.1-5.4. 

Notes:

I expect to respond to Assignment 1 this evening, but it may take until tomorrow evening. 
Are there questions on Assignment 2? 
For tomorrow, read sections 7.1-7.4 of K&R. 
Many of the examples from today’s class can be found in Examples/Compiling in the course web.

Overview:

Questions and Answers. 
Hello World. 
Compiling C Programs. 
C Beyond K&R. 
Back to the Basics. 
Lab (if time permits).

Questions and Answers
Are there particular questions on the reading? (I may just accumulate them and then answer them as
best I can in the appropriate sections of class.) 
Optionally: Quiz!

Hello World
Let’s explore how one turns the K&R “Hello World” program into something that meets the GNU coding 
standards.

#include <stdio.h>

main()
{
    printf("hello world\n");
}
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http://www.cs.grinnell.edu/~rebelsky/Courses/CSC161/2010F/
http://www.gnu.org/prep/standards/html_node/


Compiling C Files
In our *nix system, the C compiler command has a form similar to that of many other applications. 

cc flags files

The simplest instruction to compile a C file is 

cc file.c

Provided this instruction succeeds, it creates an executable named a.out. 
Our C compiler is fairly friendly, so it will let a lot of stuff slip. You tell it to warn you about some
dangerous stuff by adding the -Wall flag. 

cc -Wall file.c

If you want even more information about what might be wrong with your program, use the C
program checker called splint 

splint file.c

Each of the cc instructions above calls the executable a.out. What if you want a different name?
You use the -o outfile command line parameter. 

cc -Wall -o executable file.c

The command “compile a C file and use the prefix of the C file as the name of the executable” is so
common that there’s an automated way to do that. 

make file

This command uses the program Make, which lets you set rules for building different files. Make has
some decent defaults for C. 
You will notice that, by default, Make does not use the -Wall flag. You can tell it to do so by
adding an appropriate flag to the command line. 

make CFLAGS=-Wall file.c

But it’s painful to type all that extra stuff each time. Fortunately, we can put the flags in special file
called Makefile. 

The Makefile contains 

CFLAGS=-Wall

The command can once again be 

make file

I strongly recommend that you make it a practice to use Make to build programs. 
We’ll look at the details of Make throughout this semester.
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C Beyond K&R
Although K&R do not mention it, it’s good style to return a value from main. 

Why? Becuase main is declared to return a value.
The return value indicates to the caller (typically the operating system) whether your program exited
normally (return 0) or abnormally (anything else) 
What codes should you return upon failure? 

When I started programming, there were no standards. 
These days, there are two competing standards 

Two choices: EXIT_SUCCESS or EXIT_FAILURE 
Some folks use <sysexits.h> 
You can read the latter file with 

less /usr/lib/sysexits.h

You can also use exit (CODE) as the last line of main. 
You need to include stdlib.h to use exit.

Back to the Basics
Let’s move on to Chapter 2 of K&R. As you can tell, this chapter gives us a lot of language basics,
focusing on the basic types of the language. 

Variable Names

Variable names are composed of letters, numbers, and underscores. 
In Scheme, we got to use many other symbols.

Depending on the C compiler you use, not all of the characters you use are significant. 
Our compiler seems to differentiate variable names even to the 1000th character.

Declarations

Simple form: 

type name;

In C, declarations need to come at the start of a block. 
In a variety of C-like languages, declarations can come in many other places.

Assignment:

Standard form 

  variable = expression;

Meaning: 
Evaluate the expression 
Copy the value into the memory location associated with the variable
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Primary Types

C has only a few basic types: char, int, short, long, float, and double, along with a few
variations of those types. 

Signed or unsigned.
Other types are usually represented by these types or combinations thereof. 

For example, Boolean values are represented as integers. (0 is false, anything else is true.)
All of these types use a fixed number of bits. 

So the programmer is expected to understand representations 
And we therefore need different kinds of integers. 
You can find information on limits in <limits.h> 
We’ll look in detail about representations in a few days.

Typically, C is silent about overflow. 
If you add two numbers and the number is too large to represent, you just get some other
number, rather than an error message.

There are way too many ways to represent numeric constants 
For convenience, we’ll focus on char, int, and double

Enums

We can create our own “enumerated” types: Types whose values appear to be symbolic. 
Behind the scenes, they are just integers.

Basic syntax for describing the type 

enum name { VAL0, VAL1, ..., VALN };

Basic syntax for declaring enumerated variables 

enum name var;

And More

We’ll cover the other stuff as necessary.

Lab
Do the lab. 
Be prepared to reflect.
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