
CSC161 2010F Imperative Problem Solving

Assignment 4: Fun with Bits and Beyond
Assigned: Friday, 17 September 2010
Due: 11:00 p.m., Wednesday, 22 September 2010

Summary: In this assignment, you will explore the underlying representation of some types and the
consequences of C’s type systems. You will also build a simple calculator.

Purposes: To give you more experience with these key concepts in C.

Expected Time: Two to three hours.

Collaboration: I encourage you to work in groups of two or three students. However, you may work on
your own or in groups of up to size four. You may discuss the assignment with anyone you wish, provided
you clearly document such discussions.

Submitting: Email me your answers. See further details below.

Warning: So that this assignment is a learning experience for everyone, I may spend class time publicly
critiquing your work.

Assignment

Part 1: Examining Bits

This part of the assignment was done in class!

Write a function, void show_int_bits (int i), the prints out the bits in integer i. For example,
given 5 as input, your program should output something like

00000000000000000000000000000101

or

00000000 00000000 00000000 00000101

or

0000 0000 0000 0000 0000 0000 0000 0101

Part 2: Reverse Polish Notation

As you may know, Reverse Polish Notation (RPN) is a standard notation for calculation that is completely
unambiguous. RPN is a postfix notation. That is, in RPN, the operator follows the operands. For example,
to add 2 and 3 and multiply the result by 7, we would write

1

http://www.cs.grinnell.edu/~rebelsky/Courses/CSC161/2010F/

2 3 + 7 *

The standard implementation of RPN is fairly simple and uses a stack. When the next input is a number, it
gets pussed on the stack. When the next input is an operation, the parameters get popped from the top of
the stack, the operation gets applied, and the result gets pushed back on the top of the stack.

Write a program, rpn, that does RPN calculation, taking the input from the command line. For example,

% rpn 5
5
% rpn 5 2 +
7
% rpn 5 2 + 8 ’*’
56
% rpn 8 5 2 + ’*’
56

You should support at least the binary operations +, -, *, and /, and the unary operation negate.

You may assume that your stack need hold no more than sixteen values.

Some Hints

As you may know from your previous programming experience, one simple implementation of a stack is
an array with an index that keeps track of the “top” of the stack. We’ll call that index top. When you put
something on the stack, you store it at stack[top] and then increment top. When you pop something
from the stack, you grab the value at stack[top-1] and decrement top.

As you’ve learned recently, it’s fairly easy to determine if a string has a particular value. The strcmp
procedure returns 0 when given identical strings. For example, we might check whether argv[i] is the
plus sign with

 if (strcmp (argv[i], "+") == 0)
 ...

Extra Credit
a. Turn your Reverse Polish Notation program into a procedure, int rpn (int count, char
*vec[]), that implements a reverse polish notation calculator.

You can assume that any string in the array that is not one of the basic operations is an encoded integer
that you can decode with atoi.

b. Write a series of examples that let you explore the behavior of your calculator. For example,

void
dump (int count, char *vec[])
{
 int i;
 if (count == 0)
 return;

2

 printf ("%s", vec[0]);
 for (i = 1; i < count; i++)
 printf (" %s", vec[i]);
} // dump

int
main ()
{
 char *exp0[] = { "5" };
 char *exp1[] = { "5", "3", "+" };

 dump (1, exp0);
 printf (" => %d\n", rpn(1, exp0));
 dump (3, exp1);
 printf (" => %d\n", rpn(3, exp0));

 return EXIT_SUCCESS;
} // main

c. Rewrite your tests to check each result and only report an error if the result is not what you would
expect. For example,

 if (rpn (1, exp0) != 5)
 {
 dump (1, exp0);
 printf (": expected (5), got (%d)\n", rpn 1, exp0);
 ++errors
 }
 ...
 if (errors > 0)
 {
 printf ("\n%d errors encountered.\n", errors);
 }

Submitting Your Homework
Using script, build logs of sample runs of your programs.

Put those logs, your source code, and any other files you deem appropriate in a directory called
username.hw4.

Make a tarball of that directory.

Submit that tarball as an attachment to an email message entitled should be titled CSC161 Assignment 4.

3

	Assignment 4: Fun with Bits and Beyond
	Assignment
	Part 1: Examining Bits
	Part 2: Reverse Polish Notation
	Some Hints

	Extra Credit
	Submitting Your Homework

