
Programming Languages (CS302 2007S) 

Jean E. Sammet - Programming Languages: History and 
Future
Comments on:

Sammet, Jean E. (1972). Programming Language: History and Future. Communications of the ACM 15(7),
July 1972. pp. 601-610.

The object oriented languages Simula and SmallTalk were just being developed while this paper was
written. In [4] the author mentions that developments of programming languages will be guided by the aim
to make the communication between a computer and a user easier. In the next few decades object oriented
paradigm was popularly accepted as an important programming paradigm. Has this paradigm made such
communication any easier?

The notion of “user” has clearly changed significantly since 1970. I’m not sure that the comment makes
as much sense. I’m also not sure that OOP, at least as it is practiced today, outside of the
Smalltalk/Squeak community, really meets those standards.

Sammet in the article on page 603 says that importance and wide use are not the same, how and why is
that the case for programming languages?

I think she makes the answer pretty clear - she defines importance in terms of the effect the language had
on the computer science community, primarily the languages community. Wide use is just what it sounds
like - How many programmers use it. In more modern realms, we might argue that Windows broke no new
ground in operating system or user interface design (okay, at least for the first few versions, it’s clear that
it went backwards). Nonetheless, it is still the most widely-used OS.

It was pretty interesting to read an article predicting the future, which is in fact the present. 

I’m not sure what you mean by “in fact the present”. Are you claiming that Sammet’s predictions were
correct, or simply indicating that Sammet’s future is our present? A clearer exposition of these issues
would strengthen this comment.

While the day of asking the computer to “COMPUTE THE PAYROLL FOR ‘MY COMPANY’ is at least
one or two decades in the future ...” My brother just asked if I could write a program to do that for his
company the other day. I guess the author was wrong on that one.

Well, depending on how the data is entered, some SQL systems can do something similar.

How does the definition of programming languages/higher level languages compare to our own? The
author has in there that there is good potential for conversion to other computers. This implies to me that
he isn’t including the kind of languages that are used to represent algorithms as we discussed in class.
What about the languages which are modeling problems for other people in addition to those used for
computers? I also don’t quite understand what he means by part 4 of the definition, "there is a notation

1

http://www.cs.grinnell.edu/~rebelsky/Courses/CS302/2007S/


which is closer to the original problem than assembly language would be."

We will be discussing most of these issues in class. By “conversion to other computers”, she means that
we can compile the program for multiple architectures.

As a matter of curiosity, what ever did happen to FORTRAN and COBOL. The author goes on about how
they’ll keep being used in the future but now they’re totally shunned, insofar as I can tell. What about
them made them be so outmoded?

Sammet claimed that they’d last five or ten more years. Both are still going fairly strong. There’s a huge
amount of legacy COBOL still being used. Right before Y2K, COBOL programmers were in great demand
for just that reason. Lots of Physicists still program in something called Fortran, although we might argue
that it’s a substantially different language.

It is difficult to write a history of programming language because of the number of stages a language goes
through. The author spends a little more time on the 1950s and 60s than wikipedia and stresses its
importance. Looking to the future from 1972, the author hoped that languages would develop to the point
that they can understand English or at least user defined languages. He wanted less structure in the
language and more control for the computer in how it performs tasks.

While I appreciate the summary, I want you to reflect, not just summarize.

So far, all the Programming Languages are alphabetic. Has any one thought about using representive
languages? symbolic? like most ancient coutries’ languages?

APL was symbolic (using Greek characters). It ended up being a bit too terse for ost people to read it.
You’ll see somewhere that it is considered a bit of a “write-only” language. One might argue that the
code part of most regular expressions is not alphabetic, but rather symbolic.

It seems like all three articles skirt the question of what qualifies as a "programming language". Is this
term defined clearly? And why do assembly languages not seem to count as programming languages?

Well, Sammet tries a definition with four criteria. In some sense, I think it’s a turf issue. Assembly
language (and machine language) are really architecture issues. High-level languages attempt more to
separate themselves from the underlying machine.

The idea of writing a computer language is overwhelming to me, and so I am astounded by the number of
languages Sammet claims had been created by 1972. It’s also incredible that some languages developed
then are still in use.

However, I don’t think Sammet’s "Reasons for Importance of a Language" are extensible to today. For
example, there are languages which don’t satisfy her "technically new" criteria but are still in heavy use on
legacy systems because it is easier than upgrading.

I am curious if a paper written in 1972, before Internet culture, is still entirely applicable.

2



My intent is not for you to take everything you read in these papers as absolute truth. In fact, for this
paper, I wanted yo to reflect on what has and has not changed.

I found her "snob appeal" comment interesting-- I wonder what she would think of the current computing
culture, with language fanboyism and implicit or explicit programmer hierarchies 
http://www.hermann-uwe.de/files/images/programmer_hierarchy.png.

I think she already mentions fanatics. You could read some of her recent writings on languages; she’s still
active in the history of programming languages community (or at least was a few years ago).

It seems that a lot of effort was spent creating languages that had different features rather then being truly
innovative. One language would make one set of design decision relating to elements like garbage
collection, use of "Go To" statements, strong typing, or the use of pointers, while another language would
make a different set of design decision, without either language providing any really new or useful
improvements. It seems from the reading that lots of people agree on where they want programming
languages to go, but there isn’t much agreement on how to get there.

Well, Sammet does argue that few languages provided truly innovative things. (See her list of languages
that fit criterion 1.) I would also suggest that different designers have very different views on where
languages should go. We’ll return to that issue in the coming weeks.

I liked the third reading because it cleared up the key concepts related to computer languages. It also ties
in proving the correctness of programs (discussed in CSC 341). Even though it is pretty outdated, it lays a
very good foundation for the study of programming languagues.

In what way does it lay a good foundation?

It is quite interesting that the first programming languages focused on list processing and business related
tasks rather than scientific computations. I would have figured that the scientific community would have
widely adopted computers before businesses did and therefore a consistent way to express scientific
formulae across systems would have been developed first. The text does mention that FORTRAN was
quickly adopted by the scientific community, but I don’t see why that would be the case given that the
paper does not mention it as a language which is good at expressing scientific computations.

Well, there does seem to be some bias to Sammet’s description. Just so you know, FORTRAN really was
designed for scientific computation, so it makes sense that it was adapted. (I’d also argue that Algol was
general purpose.) The Plankalkul (sp?) was also clearly numeric.

Art vs. Science

You being an experienced programmer, how much do you think is programming an art and how much 
science?

I think algorithm design is an art. You can’t just sit down and follow a set of rules to get a product. I think
that really good software architecture is an art, just as real architecture can be. However, much
programming is like much engineering - if you follow the rules and guidelines, it should be
straightforward, and that’s what people tend to mean when they say that it’s a science.

3

http://www.hermann-uwe.de/files/images/programmer_hierarchy.png


“Vitually everyone agrees that today programming is an art, not a science.” I think if I asked anyone
today, they would say programming wasn’t an art, but maybe a science. The author thought programming
could become a science, but I I don’t believe that people actually thought programming was an art. Was
that really true or did he mean art in the sense of creation without following strict scientific principles like
the scientific method?

There is a small, but vocal, group in the CS community who consider good programming an art. There’s
even someone who is trying to put together a Master’s of Fine Arts in Computer Programming. We’ll read
a bit by that community. I expect that she really did mean the claim at the time; in the early 1970’s, there
were not a clear set of principles by which you designed programs, making it much more of an art than a
science. Also, fitting an algorithm into a restricted space was clearly an art. If you question the view,
simply think about the title of Knuth’s great work, The Art of Computer Programming.

4


	Jean E. Sammet - Programming Languages: History and Future

