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Introductory Handouts
These materials are also available online. The online versions may not precisely match the printed ones,
since I update my Web pages regularly. The online versions are the definitive ones.

Catalog Description
An introduction to many of the fundamental concepts in computer science. Builds upon the programming
knowledge from Computer Science 151 to study the design, analysis, and verification of algorithms.
Includes a discussion of data abstractions and data structures. Also provides an overview of the field of
computer science. Includes formal laboratory work.

Prerequisites: Computer Science 151.

Front Door
Welcome to the Spring 2000 session of Grinnell College’s CSC 152, Fundamentals of Computer Science 
II , which is described relatively well in the official blurb. My own take on this course is that we’ll be
expanding your knowledge of Computer Science and of computer programming, while emphasizing the
development and analysis of common data structures and algorithms. We will be using Java as our
development language.

In an attempt to provide up-to-date information, and to spare a few trees, I am making this as much of a
‘‘paperless’’ course as I can. You may also want to read the basic instructions for using this course web.

Warning!  Experience shows that CSC152 is a significantly more time-consuming and accelerated course
than CSC151. Expect to spend about twice as much time on CSC152 as you spent on CSC151, and expect
to go about twice as fast through the material.

Basics

Meets: MTuWF 11-11:50 a.m.

Instructor : Samuel A. Rebelsky, Science 2427. Office hours: Tu 2:15-4:15, W 3:15-4:15 (also feel free to
stop by when my door is open)

Grading: Labs and attendance: 10%; Homework: 30% (3-5 graded assignments out of 6-10 total
assignments); Project: 25%; Exams: 35% (3 graded take-home exams).

The final examination for this course is optional. It can be used as a makeup for one examination. Like the
other examinations, it will be a take-home examination.

Labs: While you won’t do as many labs as you did in CS151 (if you took CS151), Labs are for your
benefit, not mine, so I won’t be grading most of them (other than to check that you completed them).
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Extra Credit : I will occasionally give you quizzes to ensure that you’re keeping up with the reading.
Correct answers on the quizzes will give you some amount of extra credit. I may also give some extra
credit for corrections to Java Plus Data Structures.

Throughout the term, I may suggest other forms of extra credit.

Books and Other Readings

Rebelsky, Samuel (2000). Experiments in Java. Reading, MA: Addison Wesley Longman. This is the
laboratory manual that we will use for the first few weeks of class. It is temporarily available online, but
you are expected to purchase copies. (I receive no royalties.)

Dale, Nell; Rebelsky, Samuel; and Weems, Chip (2001). Java Plus Data Structures. This is also in draft
form. I will distribute a chapter each week (more or less). You can find additional materials online.

Rebelsky, Samuel (2000). The CS152 2000S Course Web. The hypertext that you are currently reading.
All of these materials are optional, but you may find them useful.
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Class 01: Introduction to the Course
Held Monday, January 24, 2000

Overview

Today, we begin CS152 by considering the core subject matter of the course: computer science, data
structures, algorithms, and object-oriented design.

Notes

Assignments: 
Read the introductory handouts. 
Read chapter 1 of Java Plus Data Structures for tommorow. Feel free to skip over the Java 
code. 
Introductory survey (due tomorrow). Due before class Friday! 
Read lab J1 (due Wednesday).

Make sure to complete the Introductory survey for Tuesday’s class! (A few students always seem to
miss this.) 
On Thursday, January 27, at noon, I’ll be giving a presentation on summer opportunities in
computing and computer science. Some opportunities are available for non-majors, and there’s a
chance that I’ll take a first-year student for my research team, so feel free to come. 
Last-minute update (after the packet was printed): My co-authors and I have decided to rearrange 
Java Plus Data Structures. There will no longer be a Chapter 3 on Object-Oriented Programming.
The various list chapters may also be combined into one.

About This Class 
Grounding Ourselves 
Administrative Issues 
An Introduction to Data Structures 
Programming Paradigms

Summary

Course overview 
Definition of computer science 
Introduction to data structures and algorithms 
Introduction to programming paradigms 
Handouts: 

Course Overview (taken from the Course Web 
CSC152 at a Glance 
Chapter 1 and Chapter 2 of Java Plus Data Structures.
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About This Class

CS152 is primarily a course in Data Structures and Algorithms. At some institutions, it has that
name. 

A data structure is a formalism for organizing and managing data. Often, the way you organize
the information in your program permits or inhibits particular operations. Different structures
may also lead to different costs (in time or space). 
An algorithm expresses the steps involved in completing a task.

CS152 is also a course in procedural and object-oriented programming. 
Presumably, you’ve seen a little bit of each in CS151 (or whatever course you’ve taken
previously). We will certainly talk more about both paradigms. 
We will be doing our programming in Java. In the past, I’ve said that the language we use is
less important than the concepts we learn. However, I must emphasize that you will not learn the
concepts unless you also learn Java.

Like most computer science courses, CS152 will have both theoretical and practical components. I
hope you will enjoy relating the two.

Grounding Ourselves

Before we delve too far into these issues, we should ground ourselves somewhat by asking ourselves
a few questions (and I’ll be asking these of the class). 

What is Computer Science? 
What is Computer Programming? 
How are they similar? How are they different? 
What is an algorithm? 
What is a computer program?

We also want to ask ourselves some practical questions. 
What programming languages do we know? 
What CS or programming concepts are we least comfortable with? 
How comfortable are we with the workstations and Unix?

Finally, I’d like you to reflect on the course (and you’ll be doing this again on the introductory
survey). 

Why are you taking this course? 
What do you expect to get out of this class?

Administrative Issues

Please refer to the course web site and the introductory handout for details. 
Teaching philosophy: I support your learning 
Policies 

Attendance: I expect you to attend every class. Let me know when you’ll miss class and why. 
Grading: I’m a hard grader. I don’t grade everything. 
Course web 
Etc.
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The exams 
Three take-home exams during the semester. Plan to spend ten hours on each one. 
An optional final to make up for a bad exam grade. (Last semester, I didn’t give a final and just
dropped the lowest exam. This semester, I’m much more likely to give the final.)

The lab manual 
It may be available online (locally only); I’m still nego 
Using the online labs 
Yes, you must buy a copy. 
I will rarely collect labs. When I do, you can just summarize your answers on a separate sheet of
paper. 
No, I don’t receive royalties.

The book 
Under development. 
I’ll hand out chapters as I write them or determine that you need them (seven of the eleven
chapters should be ready by the start of the semester; they cover the first seven weeks of the
semester (although not in a one-to-one mapping). 
I’d appreciate comments. If you feel that you’ve made a substantial contribution to the book
through your comments, let me know and I’ll put you in the acknowledgements section.

Projects 
The tradition is to do a large project 
I’ll list a few possibilities: Email client, Game, Image processing package, Four years at a
glance, PseudoVax 

An Introduction to Data Structures

This semester, we’ll talk about data structures and abstract data types. Many computer scientists
treat them as equivalent terms. 
An abstract data type (ADT) is a collection of values and operations on those values. ADTs specify
the what of data. 
A data structure is a structure designed to organize data. 
When we distinguish the two, we sometimes say that data structures implement abstract data types. 
Those of you coming from the Scheme-based 151 may already be familiar with two basic ADTs: the
list and the vector. 
Both lists and vectors gather data into a sequence. 
More importantly, they provide facilities for manipulating the sequence. 

You can extract an element from the sequence. 
You can change an element in the sequence. 
(Sometimes) you can insert or remove an element from the sequence.

Vectors and lists differ in the operations they provide and the costs associated with each operation. 
In designing and building your own ADTs, you will be concerned with 

The specification -- the description of the data structure and the operations it provides. 
The implementation -- how you actually provide those operations (and how you store the data to
provide those operations). 
The algorithms used in the implementation. 
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The efficiency of your implementation -- how much it costs to provide those operations. 
The applications of the data structure.

Note that we want a clear barrier between specification and implementation, so that a client of one of
your data structures need only know what you do and not how you do it. We often call this separation 
encapsulation or information hiding. 
This term, we will be looking at each of these aspects of a number of the key data structures in CS.

Programming Paradigms

Computer Scientists have developed a number of strategies for looking at algorithm and data design,
including 

procedural / imperative 
object-oriented 
functional 
logical 
declarative

While individual definitions of each category may differ, most definitions have some similarities. 
In CS151, you studied functional and imperative programming. 
In CS152, you will study object-oriented and imperative programming.
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How to Use the Course Web
For a number of reasons, I have chosen to make many of the handouts for this course available only in
electronic format on the World-Wide Web. I will not go over basic use of the Web, since you should
know about it from other courses. You should make sure to ask me if you have any questions about using
the World-Wide Web.

The course web can be found at 
http://www.math.grin.edu/~rebelsky/Courses/CS152/2000S/  You may want to
bookmark that page.

A number of important pieces of information are in the course web, including assignments, readings,
requirements, syllabus, and office hours. I assume that if I put information on the Web, you will
(eventually) read it. 

At the bare minimum, you should read all the pieces of basic information about the course. Of
particular interest is the syllabus, which lists all the readings. I will also hand out a copy of this
information on the first day of class. 
I prepare a rough outline for each class. Most students find these useful, and you should feel free to
refer to them before, during, and after class. Since this class is becoming more lab-based, it is likely
that in laboratory sessions there will be more information in the outlines than I will cover in class. 
Each outline begins with some notes. You can find just the notes in a separate news page.

At the top and bottom of every page are a series of links to important components of the course web.
These are

Instructions. This set of instructions. 
Search. A simple search facility for the course web. 
Current. The outline of the current or next class. You may need to reload the page to get the
appropriate version. 
News. The course news, taken from the outlines. 
Syllabus. The course syllabus. 
Glance. An abbreviated version of the syllabus. 
Links. A collection of links that you might find useful. 
Handouts. Handouts for the class. 
Project. Information on the course project, including code files once they become available. 
Outlines. The outlines of classes that have been held. You can sometimes access other outlines
through the syllabus. 
Labs. Laboratory assignments not in Experiments in Java. 
Assignments. A list of the assignments for the class, accompanied by their due dates 
Quizzes. The quizzes and surveys for this course. I don’t always grade these. 
Examples. A list of examples generated for this class. 
EIJ Experiments in Java, the laboratory manual used for the first few weeks of class. 
JPDS. The textbook for the class (or a current draft thereof). 
Tutorial. A local online copy of The Java Tutorial. This is a useful introduction to the Java
programming language. You can only access this through the MathLAN. 
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API. Documentation for the standard Java libraries.
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Administrative Information

On Teaching, Learning, and Grading

Introduction 
My Role 
Grading 
Your Role 
Lecturing 
Favoritism 
Summary

Introduction

I like to begin each course with a metacommentary on teaching and learning. Why? Because I care about
the learning process, because I seem to have a different teaching style and personality than some students
expect, because I want you to think not just about what you are learning, but also how you are learning,
and, unfortunately, because in one of the first two courses I taught at Grinnell some students were clearly
dissatisfied with the way I teach. (As people are getting used to me and my teaching style, this seems to be
less of a problem.)

From my perspective, you are here to learn and I am here to support that learning. What will you be
learning? The subject matter of the course, certainly. However, I expect that (or hope that) you will also
be discovering new ways to think and learn or sharpening existing skills. In terms of subject matter, I tend
to care more about the processes and concepts that you learn than about the ‘‘basic facts’’.

Learning is an interactive process. You learn by asking, discussing, and answering questions, by playing
with ideas (in computer science, you also learn by playing with programs), and by working with others. I
know from experience that computer science cannot be learned passively: you need to experiment with
ideas (in your head, on paper, or on the computer) in order to fully grasp these ideas.

My Role

How do I try to support this learning? In a number of ways.

I assign readings to give you a basis for understanding the subject matter. Sometimes these readings will
be from the textbook, sometimes I will distribute appropriate supplements.

I lecture, lead discussions, and conduct recitations on the topics of the course. Sometimes these will be
based on readings and assignments, sometimes they will vary significantly from your readings. Why?
Because I feel it wastes your time and mine to simply reiterate the readings. If you let me know that
you’re confused about a reading, I will spend time going over that reading (either in person or in class).

To stimulate discussion and thinking, I regularly call on students in class. I know that not all of you are
comfortable answering questions publically, but I strongly believe that you need to try. Please feel free to
say ‘‘I’m not sure’’ when I call on you. At times, I’ll step through the class, asking each student in turn.
At others, I’ll call on you individually. I tend to call more on students I interact with regularly.
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I assign work because I find that most people learn by grounding concepts in particular exercises that
allow them to better explore the details and implications of those concepts. I expect you to turn in work on
the day it is due and will impose severe penalties on late assignments (including refusing to accept some
late assignments).

Some of my assignments may involve public presentation of your work. Sometimes, the best way to learn
a topic is to have to discuss it or present it to someone else. In addition, I’ve found that many students
need some work on their presentation skills. Most often, presentations will be of papers that you’ve read. 

In general, I expect you to spend about ten hours per week on this class outside of class time. If you
find that you are spending more than that, let me know and I’ll try to reduce the workload.

I grade assignments to help you identify some areas for improvement. Note that I believe that you learn
more from doing an assignment than from receiving a grade on that assignment. This means that you may
not receive a grade or comments on all your assignments. I will tell you when an assignment won’t be
graded, but not until after you hand it in. I will do my best to be prompt about returning grades on
assignments. At times, I will use a grader to help speed the process.

I give examinations because I find that many students only attempt to master a concept when preparing for
an exam. Because I care more about processes and concepts than about facts, I almost always give
open-book examinations. Because I do not feel that time limits are helpful, this semester I will give you
only take-home exams.

I give quizzes to ensure that you are doing the reading and that you are understanding what I expect you to
understand from the readings and assignments. At times, I will give quizzes to help illustrate a particular
point. This semester, all of my quizzes can only affect you positively: good work on quizzes will lead to
extra credit.

I build course webs to organize my thoughts, to give you a resource for learning, and to help those of you
who need to work on your note-taking skills. I do my best to make my notes for each lecture available on
the Web, in outline format. In general, these notes will be available approximately five minutes before
class. Warning: these are rough notes of what I expect to talk about; the actual class may not follow the
notes. I will also attempt to update the notes after each class.

I make myself available to discuss problems and questions because I know that some of you will need
personal attention. In general, if I’m in my office you should feel free to stop in. Most of the time, I’ll be
willing to help. Once in a while, I’ll be working on a project and will ask you to come back later. Students
always have first priority during office hours. You should also feel free to send me electronic mail, which
I read regularly, and to call me. This semester, I am on partial parental leave, which means that I will be
less available than normal. In particular, I will not be in the office on Tuesdays and Thursdays. Feel free to
give me a call at home on those days, but understand that I may be busy.

At times, I survey my students to better understand how the class is going. Because I do research on the
effects of computers on learning, I sometimes give surveys to gather data.
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Grading

At the same time that you learn and I try to help you learn, Grinnell and the larger community expect me
to assign a grade to your work in the class. I base grades on a number of components, but primarily on 
assignments, examinations, and involvement in classroom discussions.

Because I understand that not everyone gets everything right the first time, I will occasionally allow you
to substitute an extra assignment for one that you did poorly on. Unfortunately, the time pressures of the
semester are significant enough that I will not be able to permit you to make up assignments except
through this mechanism.

In computer science, it is often possible to do the same problem in multiple ways. Hence, I typically
reserve class days to discuss particularly significant assignments. This semester, each exam will be
followed by a day of discussion relating to the exam. We may also take time from some classes to discuss
particulars of assignments.

I will admit to a fairly strict grading scale. Grinnell notes that A and A- represent exceptional work. To
me, ‘‘exceptional’’ means going beyond ‘‘solid’’, correct work. Exceptional work entails doing more than
is assigned or doing what is assigned particularly elegantly. Work limited to mastery of the core materials
is B-level work. To help you demonstrate exceptional understanding, I will occasionally suggest extra
credit work (although truly exceptional students will often suggest such work on their own).

To help eliminate biases, I typically use a numerical grading scale. 94-100 is an A, 90-93 is an A-, 87-89
is a B+, 84-86 is a B, and so on and so forth.

Your Role

How should you participate as a member of my class? (Or, how do you do well in my class?) By being an
active participant in your own learning. In part, this means doing all the work for the class. It also means a
number of other things.

Come talk to me when you have questions or comments about subject matter, workload, or how the
course is going in general. I will also set up an anonymous comment page for those who are
uncomfortable talking to me directly.

Do the readings in advance of each class period and come prepared with a list of things that you don’t
understand. I will try to spend time at the beginning of each class session answering these questions or
will restructure the lecture to accommodate them.

Ask and answer questions and make comments during class periods. I consider active participation
during class a particularly important part of the learning process.

Begin your assignments early. Students who begin assignments early have more opportunities to ask for
help, to make sure that the assignment gets completed, and to sleep at night. Such students also do better
in general.
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Lecturing

I seem to have a different ‘‘lecturing’’ style than some students expect. As I mentioned earlier, I don’t
think it is the purpose of lecture to reiterate the readings. I do, however, think lecture and readings can
provide alternate perspectives on the subject matter. At times, I will also discuss issues not covered in any 
readings.

I see no point in going on with a lecture or example if many students don’t understand what’s going on.
You are the first line of defense: stop me when you are confused. In addition, I will occasionally stop the
class and ask for a show of hands to see who is confused. Don’t be embarrassed to raise your hand; if you
are confused, it is likely that someone else is also confused. I realize that this show of hands leads to some
‘‘pressure for understanding’’. However, you won’t get much out of a class if you’re confused (and
therefore just copying down what I’m writing without thinking about it).

I deem it important for students to be active participants in lecture. This means that I will often ask you to
help develop algorithms, solve problems, and even critique each other’s answers. If I call on you and
you’re not sure of an answers, feel free to say ‘‘I don’t know’’ or to venture a guess. I consider it very
important for all of us to see the problem solving process, warts and all. Note that I often generate
examples of discussion ‘‘on the fly’’ so that we can all be involved in the problem solving or development 
process.

Favoritism

For various reasons, I often get to know some students better than others. I tend to call on the students I
know better, and sometimes respond slightly better to their questions because I have more context for the
questions. I’m happy to make all of you ‘‘favorite’’ students. If you come to see me regularly and work
enthusiastically on the material, you’ll probably end up being a student I know well.

Summary

As the prior discussion suggests, I expect a great deal from my students. I also use many different
strategies to get the best out of you. Feel free to discuss any of this with me (anything from concerns about
this perspective to suggestions on improving teaching and learning).

Academic Honesty

I expect you to follow the highest principles of academic honesty. Among other things, this means that
any work you turn in should be your own or should have the work of others clearly documented. When
you explicitly work as part of a group or team, you need not identify the work of each individual.

You should never ‘‘give away’’ answers to homework assignments or examinations. You may, however,
work together in developing answers to most homework assignments. Except as specified on individual
assignments, each student should develop his or her own final version of the assignment. On written
assignments, each student should write up an individual version of the assignment and cite the discussion.
On non-group programming assignments, each student should do his or her own programming, although
students may help each other with design and debugging.
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When working on examinations, you should not use other students as resources.

If you have a question as to whether a particular action may violate academic standards, please discuss it
with me (preferably before you undertake that action).

Citing Program Code

Note that computer programming shares with normal writing a need to cite work taken from elsewhere. It
is certainly acceptable practice to borrow other code for your assignments. However, you must cite any
code that you use from elsewhere. Each piece of code you take from elsewhere must include a comment
that specifies:

the author of the original code; 
the date the original code was written and the version of the code (if available); 
the date you incorporated the code into your program; 
a summary of the modifications (if any) you made to the code; 
instructions for getting the original code.

This applies not only to the code you get from the Web and elsewhere; it also applies to code you get from
me and from the textbook.

You do not need to cite the classes and libraries you use, as the command to include classes and libraries
within a program provides sufficient citation.

Disabilities

I encourage those of you with disabilities, particularly ‘‘hidden disabilities’’ such as learning disabilities,
to come see me about the accommodations that I can make to make your learning easier. If you have not
already done so, you should also discuss your disability with academic advising. If you think you may
have an undocumented learning disability, please speak to me and to academic advising.

In my experience, some learning difficulties can make computer science more difficult because of
computers’ emphasis on small details. I also know that many of my favorite and best students have some
learning disability, and have certainly succeeded. We’ll all do better if you talk to me about disabliities 
early.

Note that I generally feel that the ‘‘accommodations’’ that we are asked to make for those with learning
disabilities are often appropriate for all students. Hence, I rarely give timed exams and I typically allow
students to use computers during exams.
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Project

Final Project

As part of your work in CSC152, you will be working on a large final project. You will work in small
teams of 3-4 students, and each team will contribute a different part to the project. The subprojects will, of
course, depend on the intended final project.

We first tried this large project in Spring 1999, and students reported that it was quite successful in that it:
(1) demonstrated practical uses for many of the issues we covered in CSC152; (2) provided an appropriate
mechanism for discussing and learning about issues in software design; (3) strengthened students skills at
working in groups; and (4) provided a useful ‘‘line on the resume’’. In Fall 1999, students came to much
the same conclusions, although we did not get as far int he project as we would have hoped.

Potential Projects

In Spring 1999, we built a distributed online auction system which will be used for art auctions at Science
Fiction Conventions. In Fall 1999, we built most of the parts for an email client. This semester, we will
choose a new project. (And yes, you can have input into the choice.)

Here are some of the suggestions I’ve come up with. Feel free to suggest your own.

Emailer. We could continue to work on the email package from last semester.

Image Manipulation. We can put together a package that allows one to manipulate digital images. This
may include blurring, rotation, and other things you come up with. It might also be appropriate to provide
a form of animation by applying multiple transformations in sequence. We may even choose to make this
scriptable (so that people can write simple programs to transform an image).

A Nonviolent Game. I’ll admit that I don’t have any great plans here, but I thought I’d throw it out as a
potential idea. We may also want to throw some form of networking into the mix (and may even need to
do so). I think some form of Calvinball would be interesting.

Pseudo-Vax. An application that provides many of the features that students miss from the vax, including
chat and plan files.

Four Years at a Glance. An application to help students (and their advisors) plan their careers at Grinnell.
Given the new requirement that students fill out a four-year plan when they declare their major, this
application could be particularly helpful.

A Web Search Engine. 

Approximate Schedule

Discuss possible projects: Week three 
Settle on a project topic: Start of week four 
Discuss architecture and break into teams: Week four 

14



Specifications due: Week six 
Final specifications due: Week seven 
Individual implementations due: Week ten 
Work on integration: Week eleven 
Public presentation: Week twelve 
Final projects due: Week thirteen
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Course Syllabus
This is a highly approximate syllabus. Expect topics, assignments, ordering, and almost everything else to 
change.

Week One: Introduction 
Week Two: Object Basics 
Week Three: Java Fundamentals 
Week Four: Building Graphical Programs 
Week Five: Algorithms and Recursion 
Week Six: Algorithms, Classic and Otherwise 
Week Seven: Data Structures 
Week Eight: Lists 
Break 
Week Nine: Linear Structures 
Week Ten: Dictionaries 
Week Eleven: Miscellaneous 
Week Twelve: Trees 
Week Thirteen: Graphs 
Week Fourteen: Wrapup 
Final

Week One: Introduction

Class 01 (Monday, January 24, 2000) Introduction to the Course

Course overview 
Definition of computer science 
Introduction to data structures and algorithms 
Introduction to programming paradigms 
Handouts: 

Course Overview (taken from the Course Web 
CSC152 at a Glance 
Chapter 1 and Chapter 2 of Java Plus Data Structures.

Class 02 (Tuesday, January 25, 2000) Introduction to Java

Introduction to object-oriented programming 
An introduction to Java 
Java vs. Scheme 
Due: 

Introductory survey 
Reading: Chapter 1 of Java Plus Data Structures. 
Reading: Introductory Handouts
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Class 03 (Wednesday, January 26, 2000) Lab: Getting Started with Java

Using Java in the MathLAN, revisited 
Laboratory J1: An Introduction to Java 
Handouts: 

Java Plus Data Structures, Chapter 3 (I hope)
Due: 

Preparatory reading of Lab J1 
Preparatory reading of Using Java in the MathLan

Class 04 (Friday, January 28, 2000) Lab: Objects and Methods

The structure of a class, revisited 
Writing methods 
Lab J2: Objects and Methods 
Due: 

Preparatory reading of Lab J2

Week Two: Object Basics

Class 05 (Monday, January 31, 2000) Lab: Objects and Classes

Encapsulating object state with fields 
Constructors 
Overloading 
Lab J3: Building Your Own Classes 
Distributed: 

Java Plus Data Structures, Chapters 4, 5, 6, and 11
Due: 

Preparatory reading of Lab J3 
Homework 1: Completed Lab J2

Class 06 (Tuesday, February 1, 2000) Reuse Through Inheritance and Polymorphism

Goals of reuse 
Inheritance 
Overloading 
Polymorphism 
Due: 

Preparatory reading of Labs O2 and O3

Class 07 (Wednesday, February 2, 2000) Lab: Polymorphism

Lab O3: Interfaces and Polymorphism 
Distributed: 

Homework 2: The Design of a Student Info Class (Due Monday, February 7, 1999)
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Due: 
Preparatory re-reading of Lab J2: Polymorphism

Class 08 (Friday, February 4, 2000) Object-Oriented Design

(Re)Introduction to object-oriented design 
Motivation 
Key attributes

Project discussion 
Sample object-oriented designs 
The six P’s 
Due: 

Reading of Lab O1: Object-Oriented Design (we will not do this lab)

Week Three: Java Fundamentals

Class 09 (Monday, February 7, 2000) Lab: Primitive Types

The need for primitive types 
Java’s primitive types 
Objects that correspond to the primitive types 
Lab X1: Primitive Types 
Due: 

Preparatory reading of Lab X1 
Homework 2: The Design of a Student Info Class

Class 10 (Tuesday, February 8, 2000) Lab: Conditionals

Boolean values and expressions 
The if  statement 
The switch  statement 
Lab J4: Boolean Expressions and Conditionals 
Due: 

Preparatory reading of Lab J4: Boolean Expressions and Conditionals

Class 11 (Wednesday, February 9, 2000) Lab: Loops

The need for repetition 
Primary looping control structures: 

for  loops 
while  loops

Lab J5: Control Structures for Repetition 
Due: 

Preparatory reading of Lab J5
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Class 12 (Friday, February 11, 2000) When Things Go Wrong

Program design: How to handle and check errors 
Test before execution 
Test results 
Catch exceptions

Avoiding errors: Preconditions and postconditions 
Handouts: 

Exam 1 (due Friday, February 18, 2000)
Due: 

Preparatory reading of Lab X3 
Homework 3: A Simple Calculator

Week Four: Building Graphical Programs

Class 13 (Monday, February 14, 2000) Lab: Java’s Abstract Windowing Toolkit

GUI basics 
Java’s Abstract Windowing Toolkit (AWT) 
Primary components: Frames, TextFields, etc. 
Event handling 
Extra discussion: Selecting a project 
Lab G2: Java’s Abstract Windowing Toolkit 
Due: 

Preparatory reading of Lab G2

Class 14 (Tuesday, February 15, 2000) Lab: Java’s AWT, Revisited

Organizing the frame 
Layout managers 
Panels

Event Handling, Revisited 
Lab G3: Java’s Abstract Windowing Toolkit, Continued 
Due: 

Preparatory reading of Lab G3

Class 15 (Wednesday, February 16, 2000) Image Processing

Modeling an image 
Colors in Java 
Java’s Image  class 
An improved image class
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Class 16 (Friday, February 18, 2000) Project Discussion

Discussion: 
Project components and architecture 
Working in a team 
Selection of components

Due: 
Exam 1 
Nominations for project teams

Week Five: Algorithms and Recursion

Class 17 (Monday, February 21, 2000) Discussion of Exam 1

Further project discussion 
Summary of results of exam 1 
Particular problem areas 
Distributed: 

Answer key for exam 1

Class 18 (Tuesday, February 22, 2000) Algorithm Analysis

Two simple ‘‘find the smallest value’’ algorithms 
Basics of algorithm analysis 
Other searching algorithms 
Due: 

Java Plus Data Structures, Section 5.5

Class 19 (Wednesday, February 23, 2000) Lab: Recursion

Recursion 
Purpose: looping

The three question method: 
Recursive case 
Base case 
Shrinking input

Recursion vs. iteration 
Lab A1: Recursion 
Due: 

Preparatory reading of Lab A1 
Java Plus Data Structures, Chapter 6: Recursion 
Homework 4: A Graphical Student Database

20

http://www.math.grin.edu/~rebelsky/EIJ/Labs/A1.intro.html


Class 20 (Friday, February 25, 2000) Analyzing Recursive Algorithms

Examples 
Three versions of exponentation 
Two versions of Fibonacci

Recursive functions and recurrence relations 
Due: 

Project, Phase 1: Initial specifications for all your classes (written as interfaces)

Week Six: Algorithms, Classic and Otherwise

Class 21 (Monday, February 28, 2000) Project Discussion: Specifications

Project Narrative

Class 22 (Tuesday, February 29, 2000) Binary Search

Binary search 
Iterativev vs. recursive 
In Scheme 
In Java 
Examples

Comparing objects 
Due: 

Java Plus Data Structures, Sections 5.1 and 5.2

Class 23 (Wednesday, March 1, 2000) Sorting Algorithms

The problem of sorting 
In-place vs. out-of-place sorting 
Stable sorts 
Three basic sorting methods: 

Selection sort 
Bubble sort 
Insertion sort

Choosing a sorting method 
Due: 

Java Plus Data Structures, Chapter 11: Sorting 
Homework 5: Algorithm Analysis

Class 24 (Friday, March 3, 2000) More Efficient Sorting Algorithms

Divide and conquer sorts 
Merge sort 
Quick sort

Other sorting techniques 
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Due: 
Project, Phase 2: Revised specifications for project classes

Week Seven: Data Structures

Class 25 (Monday, March 6, 2000) Project Discussion: Revised Specifications

Project narrative, revisited 
Other comments on specifications

Class 26 (Tuesday, March 7, 2000) Introduction to Data Structures

Introduction to data structures 
Four key issues: functionality, implementation, efficiency, applications

Compound data types 
Collections 
Iterated Collections 
Keyed Tables

Class 27 (Wednesday, March 8, 2000) Arrays

Arrays as a data structure 
General model 
Java’s model

Why use arrays? 
Handouts: 

Exam 2 (due Friday, March 17, 2000)
Due: 

Java Plus Data Structures, Section 2.3 and Case Study: an Array of Strings 
Homework 6: Quicksort

Class 28 (Friday, March 10, 2000) Lab: Documentation and Testing

I’ll be at the SIGCSE conference, speaking and learning about CS education. Mr. Stone will teach
today’s class. 
Why document? 
Audiences for documentation 
Javadoc: Java’s documentation toolkit 
Short Javadoc lab

Week Eight: Lists

Class 29 (Monday, March 13, 2000) Introduction to Lists
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Introduction to collections 
Introduction to lists 
Iteration 
The design of lists 

A data-oriented perspective 
A functionality-oriented perspectivve 
Other design issues

Due: 
Project, Phase 3: Compilable interfaces and stubs for all your project classes. 
Java Plus Data Structures, Chapter 4: Implementing Lists with Arrays

Class 30 (Tuesday, March 14, 2000) Implementing Lists

Primary implementation techniques: 
Arrays 
Linked lists

Due: 
Java Plus Data Structures, Chapter 7: Linked Lists

Class 31 (Wednesday, March 15, 2000) Sorted Lists

Abstraction, revisited: What does it mean for a list to be sorted? 
Implementing sorted lists 
Due: 

Java Plus Data Structures, Chapter 5: Sorted Lists

Class 32 (Friday, March 17, 2000) Lab: Animation

It’s the day before break, so we’ll just have fun working with animations in Java 
Handouts: 

Java Plus Data Structues, Chapter 8, Stacks and Queues
Due: 

Exam 2

Break

Break runs from 5:00 p.m. on Friday, March 17, 1998 to 8:00 a.m. on Monday, April 3.

Week Nine: Linear Structures

Class 33 (Monday, April 3, 2000) Discussion of Exam 2

Summary of exam results 
Discussion of 
Handouts: 

Answer key to exam 2 
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Java Plus Data Structures, Chapter 9: Dictionaries

Class 34 (Tuesday, April 4, 2000) Introduction to Stacks and Queues

Linear Structures 
Meaning 
Core operations

Three types of linear structures 
Stacks 
Queues 
Priority queues

Due: 
Java Plus Data Structures, Chapter 8, Stacks and Queues

Class 35 (Wednesday, April 5, 2000) Lab: Implementing Queues

An array-based implementation of queues 
Special Lab: Implementing Queues 
Due: 

Homework 7: Critique of a List Design 
Preparatory reading of special stack lab

Class 36 (Friday, April 7, 2000) Lab: Stacks and Computation

Ambiguity in expressions 
Reverse Polish Notation 
Using stacks for computation 
Special Lab: Reverse Polish Notation

Week Ten: Dictionaries

Class 37 (Monday, April 10, 2000) Dictionaries

Dictionaries, Defined 
Simple Implementation: Association Lists 
Due: 

Java Plus Data Structures, Chapter 9, Dictionaries 
Project, Phase 4: Draft implementations of classes

Class 38 (Tuesday, April 11, 2000) Binary Search Trees

Modeling a data structure for binary search 
A ‘‘divide and conquer’’ data structure for searching 
Binary search trees 
Some tree terminology 
The problem of balancing trees
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Class 39 (Wednesday, April 12, 2000) Hash Tables

The elusive goal: O(1) lookup and retrieval 
Using objects as numeric indices 
Hash tables 
Java’s java.util.Hashtable  class

Class 40 (Friday, April 14, 2000) Implementing Hash Tables

Designing hash functions 
Handling conflicts in hashing 
Supporting deletion in hash tables

Week Eleven: Miscellaneous

Class 41 (Monday, April 17, 2000) Priority Queues, Heaps, and Heap Sort

A ‘‘divide and conquer’’ implementation of priority queues 
Heaps: balanced implementations of priority queues 
Heapsort: Sorting using heaps 
Due: 

Project, Phase 5: Working implementations of individual parts

Class 42 (Tuesday, April 18, 2000) Project Discussion: Integration

Narratives, revisited 
Time to work with other groups 
Proposed order of presentation for Monday

Class 43 (Wednesday, April 19, 2000) Pause for breath

A little extra time to cover topics that need more time, or to spend more time on the project.

Class 44 (Friday, April 21, 2000) Introduction to Trees

Heaps and search trees, revisited 
Representing arithmetic expressions 

Evaluating expressions
Generalizing: a binary tree ADT 
Generalizing further: a tree ADT 
Distributed: 

Java Plus Data Structures, Chapter 10, Trees
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Week Twelve: Trees

Class 45 (Monday, April 24, 2000) Project Discussion: Preparation for Presentation

We will give a public presentation of the project at lunch time. Class time will be devoted to
preparation for that presentation. I’ll pay for pizza and pop. 
Due: 

Project, Phase 6: Descriptive handouts

Class 46 (Tuesday, April 25, 2000) Automated Problem Solving with Linear Structures

Modeling puzzles 
Modeling the solution space as a tree 
An algorithm for solving puzzles 
Using stacks 
Using queues

Class 47 (Wednesday, April 26, 2000) Traversing Trees

Generalizing the puzzle solution: How d you iterate, visit, or list the elements of a tree? 
Preorder vs. postorder 
Depth-first vs. breadth-first 
Special Lab: Travering trees 
Due: 

Java Plus Data Structures, Chapter 10, Trees

Class 48 (Friday, April 28, 2000) Implementing Trees

Implementation details 
Handouts: 

Exam 3 (due Friday, May 5, 2000)
Due: 

Project, Phase 7: Final implementations

Week Thirteen: Graphs

Class 49 (Monday, May 1, 2000) Introduction to Graphs

Modeling and pictures 
Sample modeling problems 
Introduction to graphs 

A structure for modeling some common problems 
Terminology 
Methods 
Common implementations
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Class 50 (Tuesday, May 2, 2000) Simple Graph Algorithms

Common graph problems 
The traveling salescritter problem 
Reachabliity: Can you get there from here?

Class 51 (Wednesday, May 3, 2000) The Shortest Path Problem

Shortest path: How fast can you get there from here? 
A brute-force shortest-path algorithm 
Dijkstra’s algorithm

Class 52 (Friday, May 5, 2000) Graphs, Concluded

Minimum spanning tree 
Design issues in graph problems 
Handouts: 

Final examination
Due: 

Exam 3

Week Fourteen: Wrapup

Attendance is particularly important this week.

Class 53 (Monday, May 8, 2000) Discussion of Exam 3

Summary of results of exam 3 
Special problems 
Comments on projects

Class 54 (Tuesday, May 9, 2000) Course Summary and Evaluation

Course topics, Revisited 
Object-Oriented Programming and Program Design 
Algorithms: Analysis, Common, Design 
Data Structures: Design issues, Common 
Java Programming

Time for official course evaluation

Class 55 (Wednesday, May 10, 2000) What is Computer Science? Revisited

An overview of CS 
Three threads: Mathematics, Science, Engineering 
Many subtreads

Topics/courses available at Grinnell 
Due: 
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Homework 8: Project Questions

Class 56 (Friday, May 12, 2000) An Abbreviated History of Computer Science

Some definitions: Computing, Electronic Computing, Binary vs. Analog, Networking, Computer
Science 
A timeline 
The impact of computing 
Other implications 
Due: 

Course development questionaire

Final

You may turn in the take-home final any time during finals week.
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Miscellaneous

Using Java on the MathLAN Network

There are two basic steps to running a Java program in any environment: you must compile the program
and then interpret the compiled program. Compilation verifies the syntax of your program and translates
your program into a language that the computer can more easily understand. The interpreter then executes
this more easily understandable language.

To compile a program named XXX.java  in the MathLAN, type

% /home/rebelsky/bin/jc XXX.java

The ‘‘jc ’’ stands for ‘‘Java compiler’’. If there are no observable errors in your program, you will see
another prompt after about one minute (yes, the MathLAN is slwo). If there are observable errors in your
program, the compiler will print a list of line/error pairs. Most people find the error messages unreadable,
so feel free to ask me for help understanding them. Usually, if you look closely at the line (or near the
line), you’ll find the error.

When compilation succeeds, the compiler creates a file called XXX.class . You can confirm this by
typing 

% ls

To execute the compiled program, type

% /home/rebelsky/bin/ji XXX

The ‘‘ji ’’ stands for ‘‘Java interpreter’’.

These commands are set up to work with reasonable variants. Hence, you can also leave off the .java
when compiling or add it when running the program.

When you get sick of typing /home/rebelsky/bin , add the following line to your .cshrc  file. This
file is located in your home directory. Ask Sam or a tutor if you need help adding the line.

set path = (/home/rebelsky/bin $path)

Afterwards, close your terminal window and open another one. From then on, you can use just ji  and jc .

Copying Classes

If you are importing classes such as SimpleInput  and SimpleOutput , it is likely that you will
need to make copies of those classes in the current directory. (Later in the semester we may talk about
how to create your own library of standard classes.)
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Warning!

Note that you are running special scripts designed for my class. If you would prefer to execute the actual
Java compiler and interpreter, you’ll need to make a few changes to your .cshrc  file (this is only for
more advanced students). The standard java compiler is called javac . The standard java interpreter is
called java . Both can be found in /usr/local/java/bin

In order to use these, you will probably want to do the following.

Add /usr/local/java/bin  to your path. The standard command (which goes in your .cshrc) is 
set path = (/usr/local/java/bin ${path})

Unix Issues

A few helpful Unix hints:

To redo the last command, use two exclamation points. For example, if you get an error when
compiling a Java file, you can just type !!  to do it again. (This special command is often pronounced
‘‘bang bang’’.) 
To redo the last of a particular kind of command, use an exclamation point and the beginning of that
command. For example, to repeat the last man command, you would use !man .
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Java Style Guide

This document is still under development. Any suggestions would be appreciated.

Programming, like writing, provides you some freedom to express the same concept in many different
ways. Just as each writer develops his or her own personal style, so do programmers. Important aspects of
programming style include

the choise and capitalization of names (variables, function names, class names); 
the use of whitespace (carriage returns, indents) in coding; 
the ordering of components that may be presented in different orders; and 
the type and number of comments you use.

I expect you to follow some basic stylistic conventions in my class. While you will eventually develop
your own style, few of you are experienced enough programs to make sufficiently informed decisions. In
addition, a uniform style helps us discuss and share code. I will strive to use the same style, but may
violate it ocassionally. If you use emacs as your editor, it will automatically enforce some of these rules.

Names

A typical program requires a significant amount of naming of variables, fields, functions, and classes.
Strive for informative and distinguishable names. You should rarely use single-letter names (except,
possibly, for loop counters). At the same time, you need not go overboard on the length of your names.
For most purposes, five to ten characters suffice.

Sun (the developers of Java) recommends a particular capitalization style to help you distinguish the
different things that you can name.

Class names should begin with an uppercase letter and have mixed case. For example, TimeZone
and InputReader. 
Function names (method names) should begin with a lowercase letter and have mixed case when
appropriate. For example, readInteger  of getDefault . 
Variable names (field names) should not include uppercase letters. They may include underscores to
separate words. 
Constants (or variables that act like constants) should be in all capital letters. They may also use
underscores and digits. For example, TESTING.

White Space

Java is whitespace-insensitive (at least in most cases). You can put as few or as many spaces, tabs, and
carriage returns as you want in your programs. Hence, you should use whitespace to make your programs
more readable, modifiable, and debugable.

Include a blank line before each new function and between indpendent sections of a function. This
helps the reader quickly skip between parts. 
For nested code (most often surrounded by curly braces), indent the nested code by two or three
spaces (I use two; many people use three; emacs seems to use 3). 
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Don’t put anything on the same line after an opening curly brace. Doing so makes it difficult to insert
new code at the beginning of that block. 
Don’t put anything on the same line before a closing curly brace. Doing so makes it difficult to insert
new code before the end of the block. 
Some people prefer to put opening curly brace on a line by themselves. You’ll see this style in Java
Plus Data Structures. Much of the time, I prefer to put the opening curly brace after the thing that is
being opened. 
Align your curly braces (this should be automatic if you indent according to my rules above, but this
is a reminder). This makes it easier to understand the control flow of your program. 
When Java forces you to include curly braces around one command, you can put them on one line, as
in 

try { line = input.readLine(); }
catch (Exception e) { line = ""; }

Long Lines

Long lines of code are often hard to read, particularly when you print them out on a printer that only prints
80 columns. (Sometimes the extra text is lost; sometimes it’s wrapped to the next line.) Hence, you will
often need to reformat or break long lines. Try to indent the continued line in such a way that makes the
relationships clear. For example, you should indent arguments so that they match the open parenthesis for
a method.

Comments

If people are to read your class (and yes, people will sometimes need to read your classes), you must
provide comments to help them get through the morass of Java. 

An introductory javadoc class comment describes the purpose of your class and may give examples of 
usage.

An introductory programmer’s comment follows the Javadoc comment, and gives details of the
implementation for those who need it (primarily those who will want to extend or maintain your code).

Each field and method must be preceded by a short javadoc comment that describes their use. I
recommend taht your comment include the six P’s (summarized below).

Within a method, you should provide short, natural-language comments that describe what you intend to
do with your code in each ‘‘step’’ (a step need not be a line of code; some steps involve multiple lines).

If you use particularly tricky or confusing code (and yes, you probably know which pieces are tricky or
confusing), please include an explanation of what’s going on.

32



The Six P’s

When you design and document methods, you need to think about a variety of things. Last semester,
students found it useful to use what we ended up calling ‘‘the six Ps’’.

The purpose of the method. 
The parameters of the method. 
The preconditions of the method. That is, requirements that must be met in order for the method to
succeed. 
The postconditions of the method. That is, what you can guarantee will hold after the method finishes
successfully. 
Potential problems that may arise. In Java, you may throw exceptions when problems arise. 
The type and value of results the method produces. (The return value and the return type. It took a
little effort to fit this round peg into the square hole of ‘‘begins with p’’.)

Ordering

It is helpful to the reader if you order the code within your classes in a uniform way. For example, you
might separate your program into

Constants 
Fields 
Constructors 
Public methods, for external use 

Methods that modify the object 
Methods that just extract information

Helper methods, for internal use

Most readers also find it useful if you provide clear divisions between the different sections. 

This is not the only way to segment your classes. For example, if your class contains a large number of
methods, you may want to group them according to functionality.

While some people will read your code in electronic form, others will need to read a printed copy. It helps
if you alphabetize the methods or provide a "table of contents" at the beginning.

Examples

    // Step through the list of people, printing out all the students.
    for ( int i = 0; i < REPETITIONS; ++i) 
      {
        // If person i is a student then ...
        if (people[i].getRole().equals(" student ")) 
          {
            // Print out the name of person i.
            System.out.println(people[i].getName() + "  is a student ");
          } // if
      } // for
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Template

Here is a template you might use as you begin to write your classes. It is not the only possible structure,
but it is a beginning.

/**
 * A description of the class.
 *
 * @author YOUR NAME HERE
 * @version XXX of DATE
 */
public class XXX {
/*
An introductory comment for the people who have to read your code,
giving an overall structure to the class.
*/

   // +--------+--------------------------------------------------
   // | Fields |
   // +--------+

   // +--------------+--------------------------------------------
   // | Constructors |
   // +--------------+

   // +--------------+--------------------------------------------
   // | Transformers |
   // +--------------+

   // +-----------+-----------------------------------------------
   // | Observers |
   // +-----------+

   // +----------------+------------------------------------------
   // | Helper Methods |
   // +----------------+
} // class XXX
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Unix File Permissions

As many of you have noticed, Unix has a fairly complex schema for affecting the permissions of files.
You can change permissions using the file manager or the chmod command.

Defaults 
Categories of Users 
Types of Permissions 

File Permissions 
Directory Permissions 

Some Tasks

Defaults

In the MathLAN, the default is for your files to be unreadable and unmodifiable by anyone except
yourself. It is also the default that no one can see what files are in your directories are use any files in your 
directories.

From my perspective, these defaults are too cumbersome. At the very least, you should make your home
directory accessible, if not readable, with

% chmod +x /home/yourname

Categories of Users

At times, you will need to give others access to your files. For example, you may want me to look at your
files so that I can make a copy. At present, Unix only has three categories of people you can affect:
yourself, you and other general users, and any user of our system. These are conveniently referred to as 
user, group, and other.

Types of Permissions

Both files and directories have three basic kinds of permissions: read, write, and execute. 

File Permissions

When you give someone read permission to a file, it means that they can look at the contents of the file as
long as they have appropriate access to the enclosing directories. When you give some write  permission
to a file, it means that they can modify the file as long as they have appropriate access to the enclosing 
directories. Don’t worry about execute permission for files.

Directory Permissions

When you give some someone read permission to a directory, it means that they can list the contents of
that directory as long as they have appropriate access to the enclosing directories. When you give
someone write  permission to a directory, it means that they can create and delete files in that directory as
long as they have appropriate access to the enclosing directories.
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What is appropriate access? It is execute access. Without execute access, there’s not much anyone can do
in or below a directory. I’d recommend that you make it a point to give execute access to any directories
that others might use.

Some Tasks

I’d like other people to read a specific file, zebra , in /home/student/stuff/animals . They
should not be able to tell what other files I have in that directory. 

All the directories you own should be executable by all. 

% chmod go+x /home/student
% chmod go+x /home/student/stuff
% chmod go+x /home/student/stuff/animals

That file should be readable by all 

% chmod go+r /home/student/stuff/animals/zebra

You want to make sure that animals  is not readable. 

% chmod go-r /home/student/stuff/animals

I’d like to create a ‘‘drop box’’ where people can put files but can’t see them once they’re there.

All the enclosing directories should be executable. 
That directory should be executable and writiable. 

% chmod go+wx /home/student/DropBox

That directory should not be readable. 

% chmod go-r /home/student/DropBox

Unfortunately, not only is it possible for people to put files in that directory but also remove files (as
long as they can guess the names of those files). 

A particularly malicious person could write a program that simply removed every file name
from your directory.

I’d like to create a file, comments , that anyone can modify. No one else should be able to add, remove,
or even see files in its directory which I’ve called restricted .

All the enclosing directories should be executable. 
That directory should be only executable 

% chmod go-rw /home/student/restricted
% chmod go+x /home/student/restricted

The file should be readable and writable. 
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% chmod go+rw /home/student/restricted/comments
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