
CSC151.02 2010S Functional Problem Solving : Readings

How Scheme Evaluates Expressions (version 2)

Summary: We extend our understanding of the algorithm and structures that the Scheme interpreter users
to evaluate Scheme expressions. In particular, we see how the introduction of user-defined procedures
affects the operation of the interpreter.

Introduction
As you may recall, we left our original exploration of the way Scheme evaluates with a high-level
overview of an algorithm the interpreter might use and a data structure that it relies on. The data structure
is a dictionary that maps names to values. It keeps track of the values we’ve defined. The algorithm was
something like the following:

Look at the next non-space character
If the next non-space character is an open parenthesis
 Look at the next thing after the open parenthesis.
 If the next thing is the keyword define
 Read the next thing (a name to define)
 Read the next thing (an expression)
 Evaluate the expression, giving a value
 Add the [name:value] entry to the dictionary
 Otherwise the next thing must be a function
 Read and evaluate each argument
 Apply the function to the evaluated arguments
Otherwise, see if the next non-space character is a digit (or + or -)
 Read all the parts of a number
 The number is the result
Otherwise, see if the next non-space character is a letter
 Read everything up to the next space (or close paren).
 Look up the thing just read in the dictionary.
 If it’s not there, crash and burn
 Otherwise, the result is the value found in the dictionary
Otherwise, we’ve encountered an unknown kind of value

We’ve just introduced user-defined procedures, which have the following form.

(define procedure-name
 (lambda (parameter-list)
 expression-1
 ...
 expression-n))

What effects does this introduction have? Surprisingly many. We need to consider what happens in a
procedure definition and what happens when we apply a procedure.

1

http://www.cs.grinnell.edu/~rebelsky/Courses/CS151/2010S/

Interpreting Procedure Definitions
Suppose we have the following procedure definition.

(define square
 (lambda (x)
 (* x x)))

What does the interpreter do with this? Well, we know that when it sees an open paren, it looks at the next
thing. If the next thing is the keyword define, it assumes it has a definition of the form (define
name expression), evaluates the expression and then associates it with name. So, how do we
evaluate the “expression”? Here’s an interesting trick: In Scheme, you don’t evaluate lambda expressions;
you leave them as is.

Hence, the effect of the previous definition is to extend the dictionary as follows

Name Value

square (lambda (x) (* x x))

To accommodate this approach, we need to change the interpretation algorithm a bit. In particular, if the
first thing after an open parenthesis is the keyword lambda, we simply return the whole thing.

If the next non-space character is an open parenthesis
 Look at the next thing.
 If the next thing is the keyword define
 ...
 Otherwise, if the next thing is the keyword lambda
 Read until the corresponding close parenthesis.
 The whole expression is the result.
 Otherwise, the thing after the open paren is a function
 ...

But if the lambda is never evaluated, what good is it? It turns out the lambda is evaluated, just not until
you use the defined procedure.

Applying Lambda
So, what happens when we apply a user defined procedure, which we’ve just learned is stored as an
unevaluated lambda expression? Once again, we evaluate all of the arguments. It’s then time to apply the
procedure. In effect, Scheme begins by updating the dictionary so that each formal parameter (the things
that start the lambda expression) gets associated with the corresponding argument. That is, in applying
square to 32, Scheme updates the dictionary to associate 32 with x. Similarly, in applying (lambda
(first second) (- (max first second) (min first second))) to 7 and 11, the
interpreter associates the name first with the value 7 and the name second with the value 11.

2

Once Scheme updates the dictionary, it evaluates the expressions in the body of the procedure, using the
updated dictionary. When it reaches the end of the body, it uses the value of the last expression as the
value of the procedure application.

Is the interpreter done once it’s computed the value of the last expression? No. It also needs to clean up the
dictionary by removing any definitions that it added at the beginning.

The Evaluation Algorithm, Revisited
1. Look at the next non-space character
2. If the next non-space character is an open parenthesis
 2.1 Look at the next thing after the open paren.
 2.2 If the next thing is the keyword define
 2.2.1. Read the next thing after the keyword (a name to define)
 2.2.2. Read the next thing after the name (an expression)
 2.2.3. Evaluate the expression, giving a value
 2.2.4. Add the [name:value] entry to the dictionary
 2.3. Otherwise, if the next thing is the keyword lambda
 2.3.1. Read until the corresponding close parenthesis.
 2.3.2. The whole expression is the result.
 2.4. Otherwise the next thing must be a function
 2.4.1. Look up the function in the dictionary
 2.4.2. Read and evaluate each argument
 2.4.3. If the function is a built-in function, apply it directly
 2.4.4. Otherwise, the function is a user-defined function of the
 form (lambda (param1 ... paramm) body1 ... bodyn)
 2.4.4.1. Make sure that the number of arguments equals the number of
 parameters (m). If not, report an error.
 2.4.4.2. For each i, from 1 to m,
 2.4.4.2.1 Update the dictionary to associate parameter i with
 argument i,
 2.4.4.3. Evaluate expressions body1 ... bodyn.
 2.4.4.4. Undo the updates made to the dictionary.
 2.4.4.5. The value is the value of the bodyn.
3. Otherwise, see if the next non-space character is a digit (or + or -)
 3.1. Read all the parts of a number
 3.2. The number is the result
4. Otherwise, see if the next non-space character is a double quotation mark
 (").
 4.1. Read until the corresponding double quotation mark is found.
 4.2. The result is a string.
5. Otherwise, see if the next non-space character is a letter
 5.1. Read everything up to the next space (or close paren).
 5.2. Look up the thing just read in the dictionary.
 5.3. If it’s not there, crash and burn
 5.4. Otherwise, the result is the value found in the dictionary
6. Otherwise, we’ve encountered an unknown kind of value

An Example
Let’s consider an example. Suppose we have three things to evaluate: A definition of the procedure
square, a call to that procedure on the value 5, and a call to that procedure on the sum of 3 and 4.

3

> (define square (lambda (x (* x x))))
> (square 5)

We’ll begin with the define. What happens?

2. The next non-space character is an open parenthesis.
2.2. The next thing after the open parenthesis is the keyword define.
2.2.1. The name being defined is square.
2.2.2. The expression being used is (lambda (x) (* x x)).
2.2.3. We evaluate the expression.

2. The next non-space character is an open parenthesis.
2.3. The next thing after the open parenthesis is the keyword lambda.
2.3.1. We read until the closing parenthesis.
2.3.2. The result is (lambda (x) (* x x)).

2.2.4. We add [square:(lambda (x) (* x x))] to the dictionary.
We’re done evaluating the first expression.

As things stand, the dictionary now contains only one entry.

Name Value

square (lambda (x) (* x x))

Now, we’re ready to evaluate the expression (square 5).

2. The next non-space character is an open parenthesis.
2.4. The next things after the open parenthesis must be a function. It’s name is square
2.4.1. Look up the function in the dictionary. It’s (lambda (x) (* x x))>
2.4.2. Read and evaluate each argument. There’s only one.

3. The next character is a digit (5).
3.1. Read all the parts of the number. The 5 is it.
3.2. 5 is the result.

So the first (and only) argument has the value 5.
2.4.4. We have a user-defined function of the form (lambda (x) (* x x))

There is one parameter, x.
There is one body expression, (* x x).

2.4.4.1. The number of argument (just one) equals the number of parameters (just one).
2.4.4.2. We will just use parameter 1 and argument 1.

2.4.4.2.1. Update the dictionary to associate x with 5.
The dictionary now has the form

Name Value

square (lambda (x) (* x x))

x 5

4

2.4.4.3. We evaluate the body, (* x x).
2. The next character is an open parenthesis.
2.4. The thing after the open parenthesis is a function.
2.4.1. We look the function up and discover that it’s a built-in function.
2.4.2. We evaluate each argument.

The first argument is x
5. The next non-space character is a letter.
5.1. We read until we’re beyond the identifier. It’s just x.
5.2. We look up the x in the dictionary and find 5.
5.4. The result is therefore 5.

The first argument is 5.
The second argument is x

5. The next non-space character is a letter.
5.1. We read until we’re beyond the identifier. It’s just x.
5.2. We look up the x in the dictionary and find 5.
5.4. The result is therefore 5.

So, the arguments are 5 and 5
2.4.3. We apply the multiplication operation to 5 and 5. The result is 25.

The body has the value 25.
2.4.4.4. We undo the updates to the dictionary. It now has the form

Name Value

square (lambda (x) (* x x))

2.4.4.5. The value is the 25 computed in step 2.4.4.3.

That’s a lot of steps to compute the 25. Fortunately, computers are fast!

Disclaimer! We’ve Lied
In the discussion of applying lambda expressions to values, we suggested that the Scheme interpreter
updates the dictionary and then evaluates the body of the expression. However, Scheme does a bit more
trickery to limit access to the parameters of a procedure. Hence, the claim that the interpreter simply
updates the dictionary is a simplification, albeit a useful one. For most of the code you write in this class
(and elsewhere), the simplification is acceptable. However, there are some cases in which the
simplification breaks down. We’ll mention them when they occur.

For those who like esoteric terminology, the model we’ve given you is dynamically scoped. However, the
Scheme language is actually statically scoped. For those of you who don’t like esoteric terminology,
ignore the preceding two sentences. (We thought about telling you to ignore the whole paragraph, but that
means you would have to ignore the instruction telling you to ignore the paragraph, which could lead to
some confusion.)

5

Copyright (c) 2007-10 Janet Davis, Matthew Kluber, Samuel A. Rebelsky, and Jerod Weinman. (Selected
materials copyright by John David Stone and Henry Walker and used by permission.)

This material is based upon work partially supported by the National Science Foundation under Grant No.
CCLI-0633090. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5 License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc/2.5/ or send a
letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

6

http://creativecommons.org/licenses/by-nc/2.5/
http://creativecommons.org/licenses/by-nc/2.5/

	How Scheme Evaluates Expressions †version 2‡
	Introduction
	Interpreting Procedure Definitions
	Applying Lambda
	The Evaluation Algorithm, Revisited
	An Example
	Disclaimer! We've Lied

