
CS151.02 2010S Functional Problem Solving 

Class 54: What is Computer Science? Revisited
Held: Tuesday, May 11, 2010

Summary: We begin to conclude our introduction to CS by looking beyond this course to what kinds of
topics computer scientists often study. 

Related Pages:

EBoard. 

Notes:

No reading for Wednesday. (We’ll go over some key parts of the exam.) 
The Extra Credit Checklist is now available. 
EC for Student Art Salon. 
EC for Friday’s IP presentation. 
Special EC for filling out the end-of-semester RISC survey at 
http://www.grinnell.edu/academic/psychology/faculty/dl/risc/. 

Overview:

What is CS? 
Subfields of CS. 
Related Disciplines.

What is CS?
We started the course with this question. 
We therefore start to end the class with a similar question. 
I’ve given you a simple definition: Computer science is the study of algorithms and data. 
We’ve seen a bit what an algorithm is and what data are. 
But how do we study them? 
How have we studied them in this course?

A Professional Discussion
In late April and early May 2008, the SIGCSE (Special Interest Group in Computer Science
Education) listserve had an interesting discussion about the definition of CS, spurred, in part, by a
comment on the role of Calculus in CS and ABET’s decision to remove the Calculus requirement. 

ABET is the engineering accrediting board
I particularly like the following message.

1

http://www.cs.grinnell.edu/~rebelsky/Courses/CS151/2010S/
http://www.grinnell.edu/academic/psychology/faculty/dl/risc/


From: Michael Feldman Subject: Re: [SIGCSE-members] CS definitions Date: May 3, 2008 6:18:28 PM
CDT To: SIGCSE-members

Computing Curricula 2005 was developed by a joint task force of members from The Association for
Computing Machinery (ACM), The Association for Information Systems (AIS), and The IEEE Computer
Society (IEEE-CS).

Here’s the definition of Computer Science that appears in CC 2005, in the overview document at 
http://www.acm.org/education/curric_vols/CC2005-March06Final.pdf:

"Computer science spans a wide range, from its theoretical and algorithmic foundations to cutting-edge
developments in robotics, computer vision, intelligent systems, bioinformatics, and other exciting areas.

"We can think of the work of computer scientists as falling into three categories.

"-- They design and implement software. Computer scientists take on challenging programming jobs. They
also supervise other programmers, keeping them aware of new approaches.

"-- They devise new ways to use computers. Progress in the CS areas of networking, database, and
human-computer-interface enabled the development of the World Wide Web. Now CS researchers are
working with scientists from other fields to make robots become practical and intelligent aides, to use
databases to create new knowledge, and to use computers to help decipher the secrets of our DNA.

"-- They develop effective ways to solve computing problems. For example, computer scientists develop
the best possible ways to store information in databases, send data over networks, and display complex
images. Their theoretical background allows them to determine the best performance possible, and tstudy
of algorithms helps them to develop new approaches that provide better performance."

I also think the CSAB definition at http://www.csab.org/comp_sci_profession.html bears repeating:

"Computer science is a discipline that involves the understanding and design of computers and
computational processes. In its most general form it is concerned with the understanding of information
transfer and transformation. Particular interest is placed on making processes efficient and endowing them
with some form of intelligence. The discipline ranges from theoretical studies of algorithms to practical
problems of implementation in terms of computational hardware and software. A central focus is on
processes for handling and manipulating information. Thus, the discipline spans both advancing the
fundamental understanding of algorithms and information processes in general as well as the practical
design of efficient reliable software and hardware to meet given specifications. Computer science is a
young discipline that is evolving rapidly from its beginnings in the 1940’s. As such it includes theoretical
studies, experimental methods, and engineering design all in one discipline. This differs radically from
most physical sciences that separate the understanding and advancement of the science from the
applications of the science in fields of engineering design and implementation. In computer science there
is an inherent intermingling of the theoretical concepts of computability and algorithmic efficiency with
the modern practical advancements in electronics that continue to stimulate advances in the discipline. It is
this close interaction of the theoretical and design aspects of the field that binds them together into a single 
discipline.

2



"Because of the rapid evolution it is difficult to provide a complete list of computer science areas. Yet it is
clear that some of the crucial areas are theory, algorithms and data structures, programming methodology
and languages, and computer elements and architecture. Other areas include software engineering,
artificial intelligence, computer networking and communication, database systems, parallel computation,
distributed computation, computer-human interaction, computer graphics, operating systems, and
numerical and symbolic computation.

"A professional computer scientist must have a firm foundation in the crucial areas of the field and will
most likely have an in-depth knowledge in one or more of the other areas of the discipline, depending
upon the person’s particular area of practice. Thus, a well educated computer scientist should be able to
apply the fundamental concepts and techniques of computation, algorithms, and computer design to a
specific design problem. The work includes detailing of specifications, analysis of the problem, and
provides a design that functions as desired, has satisfactory performance, is reliable and maintainable, and
meets desired cost criteria. Clearly, the computer scientist must not only have sufficient training in the
computer science areas to be able to accomplish such tasks, but must also have a firm understanding in
areas of mathematics and science, as well as a broad education in liberal studies to provide a basis for
understanding the societal implications of the work being performed."

Let me pull out and emphasize one part of the 3rd paragraph, because (in my opinion) it’s really the nub of
the profession and consequently of our responsibility as educators:

"[A] well educated computer scientist should be able to apply the fundamental concepts and techniques of
computation, algorithms, and computer design to a specific design problem. The work includes detailing
of specifications, analysis of the problem, and provides a design that functions as desired, has satisfactory
performance, is reliable and maintainable, and meets desired cost criteria."

If that’s not a clear, crisp, understandable, effective definition of our profession, I don’t know what is.

Mike Feldman

Subfields of Computer Science
In part, the ways in which we study algorithms lead to different subfields of computer science. The
domains we study also lead to different classes of algorithms. 
Computer scientists who emphasize organization and architecture study the ways in which
algorithms and data may be implemented in hardware and the implications of particular
implementations. 

Example: Representing integers and adding integers. 
Grinnell’s course: CSC 211

Computer scientists who emphasize operating systems study algorithms and data representations that
permit programs to use the common resources (file system, processor, mouse, etc.) 

Example: Dining philosophers problem. 
Grinnell’s course: CSC 213

Computer scientists who emphasize software engineering look at the design of large computer
applications. They may consider process, program segmentation, team aspects, or even social aspects. 

Example: Waterfall vs. Agile 

3



Grinnell’s courses: CSC 323/335
Computer scientists who emphasize artificial intelligence look for ways to either model the way the
brain works or to build alternate simulations. 

Example: Genetic programming. 
Grinnell’s course: CSC 261 

Computer scientists who emphasize algorithms tend to look for interesting problems for which to
design algorithms. They also investigate general algorithm design strategies and prove things about
the characteristics of problems and algorithms. 

Example: Lower-bound on the running time of a sorting algorithm. 
Example: The traveling salesman problem. 
Grinnell’s’ course: CSC 301

Computer scientists who emphasize programming languages look at the design of the languages in
which we express algorithms. 

Example: Paradigms 
Grinnell’s course: CSC 302 
CSC 362 considers who we implement these languages.

Computer scientists who emphasize theory consider models of computation and the limits of these
models. 

Example: The halting problem. 
Example: The Church-Turing thesis. 
Grinnell’s course: CSC 341

Computer scientists who emphasize computer graphics write algorithms related to that problem
domain. 

Example: Ray tracing. 
Grinnell’s course: Special Topics

Computer scientists who emphasize human-computer interaction consider the relationship of the
programs we write to the people who use them. 

Example: Menu ordering. 
Grinnell’s course: Special Topics

Computer scientists who emphasize databases look carefully at the models for representing and
accessing large amounts of data. 

Example: Relations 
Grinnell’s course: Special Topics

Computer scientists across the board consider social and societal implications of computing, although
some focus more on this area than others. (And yes, some make it their specialization, and we still
consider them computer scientists.) 
And that’s just some of them.

Related Disciplines
There are many fields that are like computer science, but differ a bit. 
Here are some variants that you may hear. 
Computer Engineering emphasizes the construction of computational devices. 
Software Engineering (mentioned above) emphasizes the construction of software, particularly

4



processes, using some of the approaches of the discipline of engineering. 
Informatics is either (a) a better, European, name for CS or (b) the application of CS to a particular
problem domain. 
Information Science is the study of information. It tends to focus more on representation or the softer
sides of CS. 
Computer Programming is a profession not always closely related to CS.

Copyright © 2007-10 Janet Davis, Matthew Kluber, Samuel A. Rebelsky, and Jerod Weinman. (Selected
materials copyright by John David Stone and Henry Walker and used by permission.) This material is
based upon work partially supported by the National Science Foundation under Grant No. CCLI-0633090.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation. This work is
licensed under a Creative Commons Attribution-NonCommercial 2.5 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/2.5/ or send a letter to
Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA. 

5

http://creativecommons.org/licenses/by-nc/2.5/
http://creativecommons.org/licenses/by-nc/2.5/

	Class 54: What is Computer Science? Revisited
	What is CS?
	A Professional Discussion
	Subfields of Computer Science
	Related Disciplines


