
CS151.02 2010S Functional Problem Solving

Class 53: Objects in Scheme
Held: Monday, May 10, 2010

Summary: We begin to explore objects in Scheme. Objects encapsulate data and the procedures that work
with those data.

Related Pages:

EBoard.
Lab: Building Objects in Scheme.
Reading: Building Objects in Scheme.

Notes:

EC for Student Art Salon.
I intend to go over exam 3 in class tomorrow. I expect you all to be there.
Special EC for filling out the end-of-semester RISC survey at
http://www.grinnell.edu/academic/psychology/faculty/dl/risc/.

Overview:

Motivating problems: Circles, turtles, and counters.
Building and using compound values.
Objects: A new approach to compound values.
Creating objects in Scheme.

Motivating Problems
Suppose we want to make a drawing composed of a lot of circles. How should we represent the
circles?
How might we implement a counter to keep track of the number of times we do procedure calls?
How might we implement turtles?

Compound Values
We’ve seen two ways to represent such compound values.

As a list
As a vector

Once we’ve chosen a representation, we then build a set of procedures that work with that
representation.
As we’ve seen in our experiments with representing compound values, there are strengths and
weaknesses to simply choosing a representation and writing procedures to work with that

1

http://www.cs.grinnell.edu/~rebelsky/Courses/CS151/2010S/
http://www.grinnell.edu/academic/psychology/faculty/dl/risc/

implementation.
Strengths: Access parts by procedure; Relatively easy to use.
Weaknesses: Not fully encapsulated; hard to separate core operations from external operations (since
they’re called the same way); hard to limit access.

Objects: Encapsulating Values and Operations
In the late 1960’s, some computer scientists decided to extend the idea of representing data into
something they call an object
Objects group data.
Objects also do things.
You can’t directly access the parts of an object.
Rather, you ask the object to do things or tell you things using their internal state.
The requests you send to objects are called messages.
Traditional objects also provide a number of other advantages. Nonetheless, we’ll focus on
encapsulation.

Objects in Scheme
Standard Scheme doesn’t include objects as a built-in type. Hence, we have to implement them
ourselves.

But there’s a common technique that Scheme programmers use.
The trick that we recommend is that you implement objects as procedures that take a message as a
parameter.
Traditionally, the messages begin with a colon.
Here’s a simple object that will respond when you greet it or leave it.

(define greeter
 (lambda (message)
 (cond
 ((eq? message ’:enter) (display "Hello") (newline))
 ((eq? message ’:leave) (display "Goodbye") (newline))
 (else (error "Unknown Message")))))

Here’s how we use it

> (greeter ’:enter)
Hello
> (greeter ’:leave)
Goodbye
> (greeter ’:sleep)
Unknown Message

2

Adding State

But how do we have an object keep track of information about itself?
We build a local symbol table that is only accessible to the procedure.
We can build such a table by putting a let outside the lambda for the procedure.

(define fixed-value
 (let ((value 5))
 (lambda (message)
 (cond
 ((eq? message ’:get) value)
 (else (error "fixed-value:" "unknown message"))))))

Typically, we use vectors to encapsulate our state because we know how to mutate vectors.

(define incrementable-value
 (let ((value (vector 0)))
 (lambda (message)
 (cond
 ((eq? message ’:get) (vector-ref value 0))
 ((eq? message ’:add1!)
 (vector-set! value 0
 (+ 1 (vector-ref value 0))))
 (else (error "fixed-value:" "unknown message"))))))

And an example of its use

> (incrementable-value ’:get)
0
> (incrementable-value ’:add1!)
> (incrementable-value ’:get)
1

Lab
If there is time (unlikely), you can begin the lab on object-oriented programming.

Copyright © 2007-10 Janet Davis, Matthew Kluber, Samuel A. Rebelsky, and Jerod Weinman. (Selected
materials copyright by John David Stone and Henry Walker and used by permission.) This material is
based upon work partially supported by the National Science Foundation under Grant No. CCLI-0633090.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation. This work is
licensed under a Creative Commons Attribution-NonCommercial 2.5 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/2.5/ or send a letter to
Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

3

http://creativecommons.org/licenses/by-nc/2.5/
http://creativecommons.org/licenses/by-nc/2.5/

	Class 53: Objects in Scheme
	Motivating Problems
	Compound Values
	Objects: Encapsulating Values and Operations
	Objects in Scheme
	Adding State

	Lab

