
CS151.02 2010S Functional Problem Solving 

Class 36: Vectors
Held: Friday, April 9, 2010

Summary: We consider vectors, an alternative to lists for storing collections of data. 

Related Pages:

EBoard. 
Lab: Vectors. 
Reading: Vectors. 

Notes:

Reading for Monday: Pairs and Pair Structures. 
Assignment for Wednesday: Assignment 7: Fractals. 
Today will be a “Sam speaks for some time” day. 
Prospies! (I hope.) 
EC for today’s overcrowded lunch with Dan Garcia. 
EC for tonight’s opening reception and/or talk with Kluber and Simon. 
Any thing else of interest?

Overview:

Problems with lists. 
A solution: Vectors. 
Behind the scenes: How Scheme implements vectors. 
Important vector procedures.

Data Types
At the start of the semester, we decided that “basic values and operations on those values” are key to
writing algorithms. 

We tend to use the word “type” to express these two concepts.
We’ve seen a variety of characteristics of types in 151. 

Some types are defined in terms of a list of possible values or a simple construction method:
Character, Boolean, RGB color, etc. 
Some types that can potentially be defined recursively: Drawings-as-value, Maybe integers,
Lists. 
Some types are designed to collect other kinds of values: Lists. (Okay, maybe that’s it for now.)

We’re about to learn a few more. Vectors today. Pair structures (particularly trees) on Monday.

1

http://www.cs.grinnell.edu/~rebelsky/Courses/CS151/2010S/


List Deficiencies
Now that we’ve worked with lists for a while, we’ve identified some things that make lists
inappropriate for some situations. 

List are expensive to use; to find the length of a list or to access an element late in the list, you
need to cdr down the list. 
Lists are fixed; you can’t easily change an element of a list.

At the same time, there are some advantages to lists: 
Lists are dynamic; it is easy to grow and shrink a list. 
Lists are inherently recursive; the type is defined recursively. 
Lists are simple; you can build almost every list operation through just a few basic operations 
(car, cdr, null, and null?).

An Alternative: Vectors
Vectors provide an alternative to lists. 
They have two primary advantages: 

Vectors are indexed: You can quickly access elements by number. 
Vectors are mutable: You can change the elements of a vector.

In order to obtain these benefits, vectors lack some key features of lists. In particular, 
Vectors are static: Once you’ve created a vector, you cannot change its length.

Some key vector procedures: 
(vector val1 ... valn): Create a vector 
(make-vector length val): Make a vector of specified length, with duplicates of val as
the contents. 
(vector-ref vector position): Extract a value from a vector. 
(vector-set! vector position newvalue): Change an element of a vector. 
(vector-length vector)

Implementing Vectors
To be done live in class: Memory layout and more.

Lab
Do the lab.

Copyright © 2007-10 Janet Davis, Matthew Kluber, Samuel A. Rebelsky, and Jerod Weinman. (Selected
materials copyright by John David Stone and Henry Walker and used by permission.) This material is
based upon work partially supported by the National Science Foundation under Grant No. CCLI-0633090.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation. This work is
licensed under a Creative Commons Attribution-NonCommercial 2.5 License. To view a copy of this

2

http://creativecommons.org/licenses/by-nc/2.5/


license, visit http://creativecommons.org/licenses/by-nc/2.5/ or send a letter to
Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA. 

3

http://creativecommons.org/licenses/by-nc/2.5/

	Class 36: Vectors
	Data Types
	List Deficiencies
	An Alternative: Vectors
	Implementing Vectors
	Lab


